<table>
<thead>
<tr>
<th>計畫編號</th>
<th>EPA-88-U1H403-006</th>
</tr>
</thead>
<tbody>
<tr>
<td>年度</td>
<td>民國 88 年</td>
</tr>
<tr>
<td>計畫名稱</td>
<td>毒性化學物質減量技術之建立</td>
</tr>
<tr>
<td>計畫主持人</td>
<td>杜敬民</td>
</tr>
<tr>
<td>計畫領域</td>
<td>毒管處</td>
</tr>
<tr>
<td>主辦機關</td>
<td>行政院環境保護署</td>
</tr>
<tr>
<td>受託單位</td>
<td>工業技術研究所-化學工業研究所</td>
</tr>
</tbody>
</table>

計畫摘要

為有效防止國內因毒性化學物質的運作，造成環境的污染進而危及人體健康。藉由本計畫協助國內毒性化學物質運作業者減少使用及降低排放量，以降低對人體、環境之可能不利影響。本計畫主要針對1,3-丁二烯及丙烯二類毒性化學物質，並以其主要分佈之聚合物行製程，選び製程、ABS樹脂製程及橡膠製程的代表性工廠，由本計畫協助業者減少使用毒性物質及降低排放量。

本計畫蒐集整理聚合物製程、ABS樹脂及橡膠製造廠之詳細製造流程，深入了解每一製程單元，並參考美國工廠之製造步驟、污染排放等資料，對丙烯及1,3-丁二烯的使用程序、產品製造步驟、產品特性及污染排放、逸散源皆已確實掌握，並協助國內各廠建立製程改善、污染排放及逸散防制等毒性物質減量技術。

關鍵字

製程改善、污染排放管制、逸散防制

上傳文件

EPA-88-U1H403-006.pdf

建立者

環保署管理者

建立日期

民國91年08月23日

上次修改人員

環保署管理者

上次修改日期

民國94年06月17日
毒性化學物質減量技術之建立

研究報告

計畫執行期間：自 87 年 7 月 1 日至 88 年 6 月 30 日止

計畫主辦單位：行政院環境保護署環境衛生暨毒物管理處
計畫執行單位：工業技術研究院化學工業研究所
計畫主持人：杜敬民
研究人員：王吉孚、劉沛宏、陳孟裕、張淑芬

中華民國八十八年六月
摘 要

為有效防止國內因毒性化學物質的運作，造成環境的污染進而危及人體健康，藉由本計畫協助國內毒性化學物質運作業者減少使用及降低釋放量，以降低對人體、環境之可能不良影響。本計畫主要針對丙烯和1,3-丁二烯二類毒性化學物質，並以其主要分佈之行業聚丙烯織維製程、ABS樹脂製程及橡膠製程的代表性工廠，由本計畫協助業者減少使用毒化物和降低釋放量。

本計畫調查之聚丙烯織造廠有2家，ABS樹脂製造廠4家，橡膠製造廠5家，合計丙烯年使用量約40萬公噸，1,3-丁二烯約33萬公噸，兩者皆幾乎等於國內生產量加進口量的總和，顯見此11家製造廠對丙烯和丁二烯進行釋放量的減量工作，是國內毒化物減量工作重要的一環。本計畫蒐集整理聚丙烯織維、ABS樹脂及橡膠製造廠之詳細製造流程，深入了解每一製程單元，並參考美國工廠之製程步驟、污染排放等資料，對丙烯及1,3-丁二烯的使用程序、產品製造步驟、產品特性及污染排放、逸散源皆已確實掌握，並協助國內各廠建立製程改善、污染排放及逸散防制等毒化物減量技術。

參考美國環保署對BACT/MACT定義之精神及國內各廠現行使用之防制技術，研擬最佳可行之控制技術，其中直燃焚化、RTO焚化及觸媒焚化，是本計畫某些工廠唯一考量及採用之處理技術，因其對丙烯、丁二烯及VOCs皆可達95%以上的去除效率，分別適用於不同排氣流量和濃度，且經濟可行是本計畫相關工廠之最佳可行毒化物排放控制技術。研究人員並與各廠環保及製程相關人員進行討論，就工廠之製程方式及流程可改善和加強之處加以檢討，並建議排放和逸散防制措施及撰寫各廠毒性化學物質製程改善和污染防制建議書，若各廠確實參照建議書進行毒化物減量工作，將可減少VOCs460公噸及毒化物330公噸的排放；甚至於更多，另在逸散污染方面，加強定期檢測維修計畫，改善操作程序及運作管理規劃，設
備元件更新及裝設密閉排氣系統等，將使毒化物減少的排放量更為可觀。

各廠毒性化學物質製程改善及污染防制建議書，雖無強制性，但可揭露及提醒各廠主要缺失，已對工廠造成改善的壓力。另環保署毒管處定期要求各廠提報“毒化物製程改善、逸散減量及運作管理計畫”，建議書提及之改善事項可作為下次提報改善之重點事項，同時，環保署空保處每年皆會對工廠之主要排放源自行採樣檢測稽核，此份研究報告可提供環保署空保處作為稽核時之參考，最後，藉重地方環保單位之稽查體系，從本研究報告中了解聚丙烯纖維、ABS樹脂及橡膠製品之生產過程中，造成毒化物及VOC之主要排放和逸散源，在對此類工廠稽查時，能確切掌握重點，督促工廠執行毒化物製程改善、污染排放及逸散防制工作，並持續進行改善。
目 録

第一章 前言 .. 1
 1.1 計畫緣起 ... 1
 1.2 計畫目的 .. 2
 1.3 實施方法 .. 4
 1.4 預期進度 .. 9

第二章 丙烯 及 1,3-丁二烯之物性、化性與應用 ... 10
 2.1 丙烯 及 1,3-丁二烯之物性與化性 ... 10
 2.2 丙烯 在石油化學工業上的應用 .. 11
 2.3 1,3-丁二烯在石油化學工業上的應用 .. 31

第三章 國內聚丙烯 纖維、ABS 樹脂及橡膠製造現況 ... 59
 3.1 聚丙烯 纖維製程 ... 59
 3.2 ABS 樹脂製造廠 ... 64
 3.3 橡膠製程 .. 69

第四章 丙烯 及 1,3-丁二烯污染防制及排放現況調查 ... 73
 4.1 聚丙烯 纖維製程毒化物污染防制現況 ... 73
 4.2 ABS 樹脂製程毒化物污染防制現況 ... 74
 4.3 橡膠製程毒化物污染防制現況 ... 77
 4.4 丙烯 及 1,3-丁二烯排放現況調查 .. 79

第五章 可行的毒化物排放及逸散控制技術 ... 85
 5.1 可行之控制技術 ... 86
 5.2 毒化物排放控制措施 ... 103
 5.3 逸散減量及運作管理規劃 ... 105
第六章 國外丙烯及1,3-丁二烯相關法規112

第七章 毒化物製程改善及排放減量建議118
 7.1 製程改善建議 ...119
 7.2 毒化物排放及逸散減量措施120
 7.3 各廠製程改善及污染防制建議121
 7.4 毒化物減量技術說明會122

第八章 結論 ..124

第九章 參考文獻 ..126

附 錄
附錄一 期末報告綜合審查意見回覆
附錄二 檢測方法
附錄三 國外法規原文資料
附錄四 各廠製程及污染防制改善建議書
附錄五 毒性化學物質減量技術說明會講義
附錄六 毒性化學物質減量技術手冊
<table>
<thead>
<tr>
<th>圖目錄</th>
<th>頁次</th>
</tr>
</thead>
<tbody>
<tr>
<td>圖 1</td>
<td>毒性化學物質減量技術之建立計畫工作架構</td>
</tr>
<tr>
<td>圖 2</td>
<td>丙烯 之六種主要產品及其應用的樹狀結構圖</td>
</tr>
<tr>
<td>圖 3</td>
<td>聚丙烯 纖維製造流程圖</td>
</tr>
<tr>
<td>圖 4</td>
<td>苯乙烯丙烯 樹脂(SAN)之生產製程圖</td>
</tr>
<tr>
<td>圖 5</td>
<td>SAN 樹脂之乳化聚合生產製程流程圖</td>
</tr>
<tr>
<td>圖 6</td>
<td>SAN 樹脂之懸浮聚合生產製程流程圖</td>
</tr>
<tr>
<td>圖 7</td>
<td>SAN 樹脂之連續式巨量聚合生產製程流程圖</td>
</tr>
<tr>
<td>圖 8</td>
<td>美國 Monsanto 公司使用電化學方法製造己二 之流程圖</td>
</tr>
<tr>
<td>圖 9</td>
<td>丙烯醯胺之製造流程圖</td>
</tr>
<tr>
<td>圖 10</td>
<td>1,3-丁二烯之主要產品及其應用的樹狀結構圖</td>
</tr>
<tr>
<td>圖 11</td>
<td>苯乙烯丁二烯共聚合物(SB Copolymer)生產製程圖</td>
</tr>
<tr>
<td>圖 12</td>
<td>聚丁二烯橡膠(Polybutadiene Rubber)生產製程圖</td>
</tr>
<tr>
<td>圖 13</td>
<td>己二 之生產製程圖</td>
</tr>
<tr>
<td>圖 14</td>
<td>2-氯丁二烯(Chloroprene)單體之生產製程圖</td>
</tr>
<tr>
<td>圖 15</td>
<td>氯丁橡膠(Neoprene Rubber)之生產製程圖</td>
</tr>
<tr>
<td>圖 16</td>
<td>ABS/SAN 樹脂經由乳化製程之生產製程圖</td>
</tr>
<tr>
<td>圖 17</td>
<td>ABS 樹脂經由懸浮製程之生產製程圖(本製程不會產生丁二烯之污染排放)</td>
</tr>
<tr>
<td>圖 18</td>
<td>巨量 ABS 生產之生產製程圖(本製程不會產生丁二烯之污染排放)</td>
</tr>
<tr>
<td>圖 19</td>
<td>丁橡膠(Nitrile Elastomer)生產製程圖</td>
</tr>
<tr>
<td>圖 20</td>
<td>NIEA A723.71B 檢測系統</td>
</tr>
<tr>
<td>圖 21</td>
<td>熱焚化器示意圖</td>
</tr>
<tr>
<td>圖 22</td>
<td>RTO 焚化器示意圖</td>
</tr>
<tr>
<td>圖 23</td>
<td>觸媒焚化器示意圖</td>
</tr>
<tr>
<td>圖 24</td>
<td>生物膜代謝模式</td>
</tr>
</tbody>
</table>
表目錄

表 1 SBR 乳化狀況之標準處方 ... 37
表 2 各廠丙烯及 1,3-丁二烯年使用量統計表 .. 61
表 3 各廠產品產量統計表 .. 62
表 4 各廠主要排放源採樣檢測及排放量估算 .. 83
表 5 部份工廠新設廢氣處理設備處理效率及排放濃度 84
表 6 石化製程之排放管道管制標準 ... 84
表 7 各種臭味及 VOCs 已商業化處理技術之特性 96
表 8 各種 VOCs 已商業化技術效率與成本之比較 97
表 9 直燃式焚化爐設置資料表 ... 98
表 10 觸媒焚化設置資料表 .. 99
表 11 活性碳/吸附劑吸附設置資料表 ... 100
表 12 混式洗濾塔設置資料表 ... 101
表 13 生物處理設置資料表 .. 102
表 14 VOCs 處理技術及本計畫參與工廠使用情形彙整表 104
表 15 施行設備元件定期檢測維修對逸散減量的助益 106
表 16 日本環境廳所列的 22 個優先物質清單 ... 114
表 17 毒性化學物質減量技術說明會期程 .. 123
第一章 前言

1.1 計畫緣起

為了有效防止國內因毒性化學物質的運作，造成環境的污染進而危及人體的健康，政府於民國75年公告毒性化學物質管理法，並於78年公布其施行細則，其間因法令的重疊與周延性而陸續公告相關的管理辦法及管制清單，其目的皆在加強管理的完整性。但由整個毒管法的運作來評析，其管理模式採登記備查式，即凡自製造、輸入、販賣、使用、貯存、運送及棄置等整個運作流程皆要列入登記及管制，同時配合防災體系以應付意外洩漏所產生的危害，這種管制的方式確實可以有效的減少毒性化學物質因不當的操作而流佈至環境中，但對於使用或產生毒性化學物質為原料或產品的製程中，透過廢氣、廢水及廢棄物途徑排放至環境中的就難以掌握。

以目前管制因製造而排放的法規所規範之相關毒性化學物質排放至環境中的主要途徑來評估：

1. 廢氣

目前空氣污染防治法僅針對指標性的污染物如 NOx、SOx、粒狀污染物等項目，而對於特殊化學物質或成份則少有管制，如新公告將於 88年1月實施之「揮發性有機物空氣污染管制及排放標準」也僅針對揮發性有機物(換算甲烷方式)以設施規範或排放濃度或處理成效方式加以規範，而其排放量的多寡則未有明確之限制，如此即使達到法規的要求，亦可能產生毒性化學物質有高排放量的情形，而目前國內研擬中的有害空氣污染物排放標準又僅止於草擬研究階段，無法及時有效管理毒性化學物質藉由煙道排放及逸散等方式所產生的污染。

2. 廢水

水污染防治法放流水管制標準中部份管制項目已包含毒
性化學物質，但除了無機性金屬及鹽類(如氯離子)外，其餘如有機毒性化學物質則多已不再使用，如五氯酚、滴滴涕等，對於目前使用量大的有機化合物如丙烯醯胺、丙烯腈、甲醛、苯胺等則未能列於其中，而這些物質水溶性極高，極容易在生產過程中隨著製程廢水排出，若無良好及合適之廢水處理設施則隨著放流水排出廠外途徑進而污染環境的機率大增。

3. 廢棄物

目前廢棄物清理法對於有害廢棄物的管制及處置有進一步的規範，於「有害事業廢棄物認定標準」中對於屬毒性化學物質使用而衍生之廢棄物則於列表二中歸類為有害事業廢棄物，但根據調查資料，國內各工廠對於事業廢棄物並未有效的分類處理，因此常發現毒性化學物質藉由廢棄物途徑排放至環境中甚至造成意外事件，如高雄縣大樹鄉苯胺廢液致人於死的案件。

就長期毒性化學物質的管制策略而言，除了消極性的仍採登記備查制及推動防災應變體系外，以源頭式的管理亦是減少毒性化學物質危害風險的重要方式，包含推動毒性化學物質減量，限制目的用途或運作方式的技術需求，以替代品的開發與使用，限制排放的規範、相關設施規範的訂定及標準操作步驟的規範與工廠管理的要求等，都是值得採用的方法。

因此本計畫的主要目標即是從工廠製程切入，針對特定行業製程研擬經濟有效的毒性化學物質減量技術，以實廠輔導作爲毒性化學物質製程排放改善與逸散減量的成效，並協助工廠訂定運作管理指引模式，改善操作程序，加強毒性化學物質的回收利用與整廠的管理，以達到具體減少毒性化學物質排放的成效，並做為國內相同產業改善之示範製程及依據。

1.2 計畫目的

本計畫之目的乃在減少毒性化學物質(以下簡稱毒化物)之逸
散，以降低其對人體及環境之不良影響，兹选定毒化物丙烯和1,3-丁二烯二類毒性化學物質，並以其主要分佈之行業聚丙烯纖維、ABS樹脂及橡膠製程為深入研究對象，預計完成之工作包括：

1. 針對上述三種行業選定具代表性的工廠利用檢測方法對丙烯和1,3-丁二烯於製程使用及製造過程中排放至環境的途徑及數量進行評估。
2. 蒐集國外最新且環保之製程供國內業者參考，並就現有製程提出改善建議。
3. 根據各廠製程之設計，提供廠商污染防治設備安裝之建議以降低毒化物之排放，即研擬或提供經濟有效之逸散減量技術。
4. 經由檢測技術之數據來確定逸散減量之成效。
5. 舉辦說明會推廣本計畫建立之毒化物減量技術。
1.3 實施方法

本計畫擬協助丙烯及1,3-丁二烯使用量大之製程，建立毒性化學物質減量技術，將針對聚丙烯纖維製程、ABS樹脂製程及橡膠製程各選取一家代表性工廠，藉由本計畫協助業者減少使用和釋放量，建立為示範工廠，進一步要求同業其他工廠參照示範工廠模式進行減量。根據所設定之目標本計畫工作架構如圖1所示，各項工作內容說明如下：

1. 資料蒐集整理
 (1) 蒐集整理國內各廠製程、產量、市場營運狀況，污染防制工作，各種設備元件配置及逸散減量計畫書。
 (2) 收集美、日、歐體等國家聚丙烯纖維、ABS樹脂及橡膠製程工廠之毒化物減量技術，替代方案及污染防治工作的相關資料和法規進行整理比較。

2. 代表性工廠遴選、現勘及輔導
 (1) 藉由資料蒐集遴選代表性工廠，遴選要點：毒性化學物質使用量大，製程具代表性，該行業龍頭或具指標性工廠。
 (2) 代表性工廠現勘，從製程切入了解工廠運作、設備維護及污染防治工作，評估製程改善可行性及掌握毒化物污染途徑。
 (3) 與工廠人員就現勘發現之問題進行研討，可立即改善之缺失即刻解決，需進一步探討者，由計畫人員參考國外工廠資料及可行之技術撰寫改善建議書。

3. 污染源採樣檢測及排放總量推估
 就工廠可能排放毒化物之污染源，包含空氣及廢水進行採樣檢測，確認主要污染途徑及污染源，並估算整廠排放總量。

4. 毒性化學物質製程改善建議
蒐集國外最新且環保之製程供國內業者參考,並就現有製程可能排放毒化物之污染源提出改善建議,並提供可行之技術及設備。

5. 逸散減量及運作管理規劃

聚丙烯 纖維製程、ABS 樹脂製程及橡膠製程雖不相同,但其毒化物污染源大致可分為下列七大部份,其中包含多項逸散源:
(1) 製程元件洩漏: 此污染源包括廠內所有閥、開口端管線、採樣接頭、泵浦之軸封、法蘭、壓縮機之軸封等項。
(2) 污染防制系統: 在空氣污染防制系統中, 無論是收集或處理程序, 均是重要的逸散源。
(3) 儲存槽: 包括固定頂槽的透氣及運作損失, 浮頂槽之靜置與浮頂落下損失, 可變空間槽滿載時之損失及壓力槽之損失等。
(4) 裝載及卸載之損失。
(5) 製程設備操作洩漏: 如聚合槽開啟時之逸散等。
(6) 排放廢水。
(7) 中間產物、副產物及廢棄物。

因此針對以上的主要逸散污染源, 本計畫擬定下列兩項可行防制策略, 此等策略將依個別工廠之特性, 由廠方人員共同配合, 研修出一套適用於該廠之可行策略。

加强操作維護

多數工廠製程逸散源均是由於不當操作及設備老舊疏於維護管理所引起的, 此部份之逸散控制可分為軟體及硬體兩方面; 所謂軟體係洩漏偵測及維修, 本計畫協助各廠擬定一套「定期檢測維修計畫」, 例如在平常維修時, 將一些元件中老化或鬆動的迫緊(packing)加以換除或重新壓緊, 就可使逸散量大為減少, 同時利用手提式碳氫化合物
偵測儀(如 Foxboro OVA-108)現場篩選檢測，以判斷該維修工作是否正確有效。至於如裝載及卸載的逸散，或聚合槽開啓時之逸散等，則可藉由操作程序的改善來達到防制逸散之目的。如在裝載操作時，採用底部裝載操作或沉水式裝載等方式，將可大量減少逸散。但並非所有逸散源皆可透過定期維修工作或改善操作程序而達到所需之改善要求，這時就必需經由設備進行根本的改善，這就是所謂的硬體部份。例如將固定頂蓋式的儲槽更換為浮頂式；將一般泵浦換為無軸封式或雙機械軸封式；將傳統閥更換為隔膜式閥等等。

逸散物之收集與處理

控制污染物避免自逸散源擴散的方法，就是在逸散源裝設密閉排氣系統或局部排氣系統，將收集之逸散物導入空氣污染防制設備，如鍋爐或加熱爐焚化之。

本計畫視各廠現況，建議適用之逸散物收集與處理系統。在總體經濟的考量下，逸散減量應是分年分階段進行，因此本計畫研擬一套「三階段逸散減量計畫」，初期藉由「定期檢測維修計畫」的確實執行，將可達第一階段的逸散減量，第二階段將由改善操作程序與運作管理規劃著手，期能達第二階段的減量目標；最後則需藉由設備的更換及加裝密閉排氣系統與污染防治系統來達到的第三階段的減量目標。藉由本計畫的逸散檢測工作將可了解各廠現行之逸散狀況，而針對廠不同的逸散現況，配合「三階段逸散減量計畫」之規劃，可使各廠對自身工場逸散源改善的先後次序與方法有一清楚的了解，何者需立即加以改善，何者可列入第二、三階段目標，如此可在最經濟的情況下，達到最大效益的逸散削減。

6. 舉辦說明會
舉辦說明會推廣本計畫建立之毒化物減量技術，並藉由代表性工廠之減量成效推廣至同業其他工廠。
代表性工廠遴選
現勘及輔導

資料蒐集整潔
國外毒性化學物質減量及製程替代方案實際案例

國外毒性化學物質相關法規

毒性化學物質製程改善

評核改善成效

污染源採樣檢測及排放總量推估

逸散減量及運作管理規劃

舉辦說明會
推廣至同業其他工廠

圖 1、毒性化學物質減量技術之建立計畫工作架構
1.4 預期進度

<table>
<thead>
<tr>
<th>月次</th>
<th>第一月</th>
<th>第二月</th>
<th>第三月</th>
<th>第四月</th>
<th>第五月</th>
<th>第六月</th>
<th>第七月</th>
<th>第八月</th>
<th>第九月</th>
<th>第十月</th>
<th>第十一月</th>
<th>第十二月</th>
</tr>
</thead>
<tbody>
<tr>
<td>工作項目</td>
<td>資料蒐集整理</td>
<td>代表性工廠遴選、現勘及輔導</td>
<td>污染源採樣檢測及排放總量推估</td>
<td>期中報告</td>
<td>毒性化學物質製程改善建議</td>
<td>逸散減量及運作管理規劃</td>
<td>舉辦說明會</td>
<td>期末報告</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>備註</td>
<td></td>
</tr>
<tr>
<td>工作進度估計百分比（累積數）</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>預定查核點</td>
<td></td>
</tr>
</tbody>
</table>

第一季：
- 1 完成國內外工廠基本資料、毒化物減量及污染防制工作相關資料蒐集。

第二季：
- 2 各製程代表性工廠遴選、現勘及輔導改善。
- 3 完成期中報告。

第三季：
- 4 完成污染源採樣檢測確認污染途徑及主要污染源，並推估排放總量。

第四季：
- 5 各毒性化學物質製程改善建議
- 6 完成逸散減量及運作管理規劃
- 7 舉辦說明會
- 8 完成期末報告
第二章 丙烯及1,3-丁二烯之物性、化性與應用

2.1 丙烯及1,3-丁二烯之物性與化性

2.1.1 丙烯

丙烯 (acrylonitrile, AN) 是一種無色液體，分子量為53g/mole，有強烈似蔥蒜的味道，溶於有機溶劑，在20℃時，丙烯在水中之溶解度約為7.35%，丙烯的嗅覺閥值是21.7ppm(47mg/m³)，在攝氏22.8度下的蒸氣壓是100mmHg，沸點是77.3℃。

丙烯是工業中製造塑膠、壓克力纖維、己二胺、丙烯醯胺，與合成橡膠的原料。由於揮發性高，丙烯易存在於工廠的空氣中且易在空氣中分解。因為這種特性，丙烯只可能會對工廠附近的居民或是工廠的工作人員產生威脅；而較不會危害到遠離工廠區的民眾。根據美國環保署的資料，工廠的工作人員是最有可能經由呼吸管道與丙烯接觸的族群[1]。

根據統計資料，已有若干病例因為工作人員長期暴露在丙烯環境中而得到肺癌。動物實驗也顯示有腫瘤的現象，包括腦部、脊椎、胃腸、舌頭、和乳房等器官。美國環保署將丙烯歸類為B1致癌物質。B1類物質有高度致癌性，係有人體案例可考。

2.1.2 1,3-丁二烯[1-3]

1,3-丁二烯 (1,3-butadiene) 是一種無色氣體，分子量為54g/mol，具汽油味，易液化，易聚合，溶於醇和醚，不溶於水。1,3-丁二烯的嗅覺閥值是1.6ppm(3.5mg/m³)，在攝氏25度下的蒸氣壓是2,100mmHg，沸點是-4.41℃。

1,3-丁二烯是原油裂解的產品，生產橡膠和塑膠的原料，生產壓克力的共聚合物。1,3-丁二烯在空氣中是一種常見的物
質，但是極易受氫氧遊離基(hydroxyl radical)，臭氧，硝酸遊離基(nitrate radical)所分解。在夏天時，其濃度在兩小時內可減少一半。在冬天，可能要好幾天的時候才能減半。因為低沸點和高蒸氣壓的緣故，1,3-丁二烯極易蒸發至大氣。最易受1,3-丁二烯危害的是橡膠、塑膠及樹脂工廠的作業人員。若工廠有1,3-丁二烯的洩漏，也將會危害到鄰近的居民[1]。

已有數起病例說明1,3-丁二烯可使人體增加致使呼吸道、膀胱、胃、淋巴、和血液等器官癌症的機率。又在動物方面，已證實因吸入1,3-丁二烯而在各種器官組織產生腫瘤的現象。基於此，美國環保署將1,3-丁二烯歸類為B2致癌物質。B2類表示有動物的致癌案例可查，雖在人體中尚無足夠證據，但對人體仍有高度致癌的可能性。

2.2 丙烯 在石油化學工業上的應用[4]

丙烯(acrylonitrile, AN)在工業上的用途主要是作為下列六種物質的原料，即(1)聚丙烯纖維(polyacrylonitrile fibers); (2)苯乙烯丙烯樹脂(styrene-acrylonitrile resins, SAN樹脂); (3)ABS樹脂(acrylonitrile-butadiene-styrene resins, ABS樹脂); (4)己二(adiponitrile); (5)丙烯醯胺(acrylamide); (6)丁橡膠(nitrile rubber, NBR)。本節所討論的內容是以丙烯在美國之使用背景為主，丙烯在美國之主要產品及其應用的樹狀結構圖，請參考圖2。

2.2.1 聚丙烯 纖維之生產(Polyacrylonitrile Fibers Production)[3,4]

聚丙烯纖維(polyacrylonitrile fibers)有時亦被稱為壓克力纖維(acrylic fibers)，是指在纖維裏面丙烯之含量至少佔有85%以上。聚丙烯纖維除了含有丙烯作為主要原料之外，通常亦含有約7-10%的共單體(comonomer)，共單體之目的是用來改善丙烯纖維的物性質。常用的共單體有丙烯酸甲酯(methyl acrylate)、醋酸乙酯(vinyl acetate)及丙烯醯胺(acrylamide)。
等。有時為了使纖維易於染色，亦有其他物質予以加入，例如丙烯酸(acrylic acid)適用於加入在鹽基性染料裏面，而乙烯啶(vinyl pyridine)或乙烯咪唑(vinyl imidazole)適用於加入在酸性染料中。聚丙烯烯纖維之製程可以分為聚合單元、紡絲單元、溶劑回收單元及後處理單元等部分，圖3為聚丙烯烯纖維之製造流程圖，茲將各個步驟詳述如下：

1. 聚合單元

製造聚丙烯烯纖維之聚合體的製法有懸浮聚合合法(suspension polymerization)和溶液聚合合法(solution polymerization)。前者以水為溶劑，後者則採用溶劑，通常使用之溶劑為二甲基甲醯胺(dimethyl formamide, DMF)或二甲基乙醯胺(dimethyl acetamide, DMAC)。國內目前有二家工廠生產聚丙烯纖維，即台塑公司仁武廠及東華合纖公司，前者使用DMF作為溶劑，後者則使用DMAC作為溶劑。在聚合單元裏面可以分為三個系統，即調配系統、聚合系統和單體回收系統。首先按照欲製造的聚合體之共聚合組成，分別稱量注入調配液調合，其次將此調合液和另外調製好的過氧化物觸媒及作為反應媒體的水或溶劑，一起加入聚合槽裏面，在攪拌及溫度等控制條件之下完成聚合反應。以懸浮法生產的聚合體，經分離水、乾燥、粉碎及溶解溶劑，配製成為適當黏度之聚合體溶液，再過濾和脫泡備用。

如採用溶液法，聚合體於溶劑中形成，具黏性之聚合體可直接配製可紡性溶液。而未反應的單體則利用回收設備來回收再使用。

2. 紡絲單元

聚丙烯烯纖維的紡絲方法有濕式和乾式，前者廣為各工廠所採用，而後者已逐漸趨於淘汰。濕式紡絲是將紡絲原液通過白金材質的孔徑0.04-0.15mm之紡嘴，而噴出至溶劑-水系的凝固浴中凝固成絲條，以50-70米/分鐘的速度將絲
條倒入水洗槽熱水清洗，繼續在 80-90℃ 下熱延伸，賦與充份的分子順向和結晶化。

3. 溶劑回收單元

於紡絲過程中，沖洗出來之溶劑，如 DMF 等濃度約在 50% 以上，必須回收蒸餾使用，否則即形成嚴重的浪費，溶劑回收工程的目的即在回收紡絲過程中的溶劑(如 DMF 等)，並予以蒸餾至濃度 99% 以上，而再作為聚合反應時之溶劑使用。

4. 後處理單元

是將熱延伸過的絲條，再經稍高之溫度下的蒸氣熱定型處理，然後上油、乾燥、鬈曲，最後或定長切斷成棉(staple)或牽切成纖維束帶(tow)。
丙烯

聚丙烯 纖維
- 戶外用品，如中逢布、帳逢及室外傢俱等
- 室內用品，如編織的衣服、毯子等
- 消費性物品
- 電子器具

苯乙烯丙烯 樹脂, SAN
- 藥品及化裝品之包裝
- 電子零件
- 汽車相關物件
- 醫療使用
- 電池包裝
- 其他

ABS樹脂
- 器具
- 建築
- 電子、商業機器及電磁通信
- 其他

己二
- 己二胺(生產尼龍6,6之原料)

丙烯醯胺
- 纖維之改良與樹脂加工
- 紙力增強劑
- 沉降促進劑

丁 橡膠, NBR
- 在鑄模中製造的物品
- 乳膠
- 接著劑
- 海綿
- 穿在腳上的東西

圖 2 丙烯之六種主要產品及其應用的樹狀結構圖
丙烯 共單體 催化劑

聚合單元

聚合物

溶劑 溶解

脱泡

紡絲單元

過濾

紡絲液

溶劑回收單元 紡絲

清洗

伸縮

後處理後處理單元

上油

捲縮

束(TOW) 切斷

棉(Staple)

圖3 聚丙烯纖維製造流程圖
2.2.2 苯乙烯丙烯 樹脂之生產(Styrene-Acrylonitrile Production)

苯乙烯丙烯 樹脂(styrene-acrylonitrile resins, SAN)是由無數的苯乙烯及丙烯 單體所組成，具有不尋常的物理性質，它具有聚苯乙烯(polystyrene, PS)之透明的性質，並顯著地改善了它的機械的強度，其耐熱性、耐候性、耐油性、耐藥品性等，亦俱有改進，但是由於其流動性降低的關係，成形性比聚苯乙烯稍差。

丙烯 單體被廣泛地應用於 SAN 樹脂及 ABS 樹脂的生產。雖然 SAN 樹脂中丙烯 的含量可以達到 35%, 但是當丙烯 在 SAN 樹脂之含量逐漸增加時，其耐油性、耐化學藥品性雖有改進，但其成形性變為極壞，因此目前市面上出售的共聚合體中丙烯 的含量約在 20-30%左右，此種共聚合體由於微具吸濕性，因此在成形前必須預為乾燥。大部份 SAN 樹脂的產量是用來作為生產 ABS 樹脂之用，但亦有少部份是在市場上單獨出售。圖 4 為國內工廠之苯乙烯丙烯 樹脂(SAN)生產製程圖，其詳細步驟如下[5]：

步驟 1：將苯乙烯及丙烯 單體依照一定之比例加入進料單體配製槽製成混合單體。

步驟 2：配製成之單體在聚合反應器內生成 SAN 共聚合物，為了防止膠狀物附著於反應器上，所以必須定期清洗設備。

步驟 3：從聚合反應器出來之聚合溶液經加熱後進入脫氣槽中，聚合物溶液將從脫氣槽底部送入製粒區。

步驟 4：經由脫氣槽底部送至之 SAN 溶液將由押出機押出成形後經水槽冷卻後進入切粒機製粒。於押出成形之過程中將會有廢氣產生。

在美國生產 SAN 樹脂之三種聚合反應製程分別為乳化聚合製程(emulsion polymerization process)、懸浮聚合製程(suspension polymerization process) 和 巨量聚合製程(mass
polymerization process)。茲詳述如下[4]：

1. SAN 樹脂之乳化聚合生產製程

SAN 樹脂之乳化聚合生產製程的生產方式可以有批次製程生產及連續製程生產。無論是批次製程生產或連續製程生產，苯乙烯和丙烯 單體伴隨著乳化劑(emulsifier)、去離子水和催化劑一起置入聚合反應器內。聚合反應在溫度70~100 °C 下進行，同時進行到 90~98%之轉化率，未反應的單體則從 SAN 乳膠中使用蒸氣汽提(steam stripping)的方式加以回收。SAN 乳膠則經由凝結(coagulation)、過濾(filtration)以及乾燥(drying)等步驟才能成為最終的固體產品。在整個製程中，丙烯 可能排放之排放點(emission points)包括有單體儲槽、聚合反應器、乳膠汽提器(stripper)、凝結槽、過濾器及乾燥器等。然而，從這些排放點之丙烯 排放量是可以經由將排氣口之氣流加以焚化或燃燒，及／或將排氣口之氣流通過一個水洗滌塔(scrubber)來加以減低。有關 SAN 樹脂之乳化聚合生產製程圖，請參考圖 5，在圖 5 中之方塊流程圖中具有 ● 符號者表示是丙烯 的可能排放點。

2. SAN 樹脂之懸浮聚合生產製程

SAN 樹脂之懸浮聚合生產製程的生產方式可以有批次製程生產或連續製程生產，其中批次製程生產是主要的生產方式。在批次製程生產中，苯乙烯和丙烯 單體被機械式地散佈(dispersed)在含有催化劑及懸浮劑的水中。當經由攪拌而懸浮時，單體的小滴(droplets)將會進行聚合反應，同時，聚合物之不可溶的細珠(beads)亦將會形成。聚合反應器的溫度介於 60~150 °C 之間，而通常單體之轉化率可以達成 95%。未反應的單體可以經由快速脫除(flashing)及蒸氣汽提(steam stripping)或真空汽提(vacuum stripping)而加以回收。
圖 4 苯乙烯丙烯樹脂(SAN)之生產製程圖
固相及液相之高分子漿(polymer slurry)可以經由離心作用(centrifugations)及/或過濾(filtration)的方式加以分離。然後固相部份在一個旋轉的乾燥機中加以乾燥，同時乾燥的SAN樹脂產生要完成最終的生產步驟是要經過使用壓出機(extruder)和滾動研磨機(rolling mills)，及在染料、抗氧劑及其他添加劑中加以機械混合。經過這些操作手續所產出的成板(sheet)狀的SAN聚合物隨後加以製粒(pelletized)及包裝(packaged)。有關SAN樹脂之懸浮聚合生產製程圖，請參考圖6。在圖6中之方塊流程圖中具有●符號者表示是丙烯的可能排放點。

3. SAN樹脂之巨量聚合生產製程

SAN樹脂之巨量聚合生產製程通常是連續式製程且基本上伴隨著低的丙烯排放。苯乙烯和丙烯單體混合物放在一個適宜的改質劑溶劑(modifier-solvent)，然後使用泵浦將其抽至聚合反應器內。在一個將壓力維持在大約275kPa及溫度100~200℃之攪拌的反應器內，在有催化劑存在的情況下聚合反應將會發生。反應僅僅進行到大約20%的轉化率，轉化率的控制是為了控制SAN樹脂的粘度。反應產品流經一系列的脫氣槽，在這些脫氣槽裏面，SAN樹脂、未反應的單體以及改質劑溶劑可以被分離。脫氣槽在真空及溫度120~160℃下進行。未反應的單體、其他的一些未反應物及改質劑溶劑則從脫氣槽的上端被移開。

通過脫氣槽上端的氣體被冷凝以及通過一個冷凍的苯乙烯洗滌塔來將單體及改質劑溶劑回收到進料槽(feed tank)。冷凍的洗滌塔之排氣口所排放的氣體含有極少量的丙烯。

在脫氣槽的底部則幾乎全是溶化的樹脂，這些樹脂被壓出以及切成顆粒，這些顆粒則經由混合(blended)、研磨(milled)及摻配(compounded)等步驟。在研磨過程中，丙烯及其它之揮發性有機物(VOCs)將會被釋放出來，然後先通過一個洗
濾塔之後，再排放到大氣中。來自於進料槽、反應器及脫氣槽之丙烯排放則被送往焚化爐或燃燒塔中燒掉。有關 SAN樹脂之巨量聚合生產製程圖，請參考圖 7，在圖 7 中之方塊流程圖中具有●符號者表示是丙烯的可能排放點。
苯乙烯 聚合反應器 汽提器 凝結槽 過濾器 乾燥器 混合/研磨/摻配 SAN產品
丙烯

丙烯 回收

水 乳化劑 催化劑

廢水

註：在方塊流程圖中具有 符號者表示是丙烯的可能排放點

圖 5 SAN 樹脂之乳化聚合生產製程流程圖
苯乙烯聚合反應器
● 快速脫除槽
● 過濾器
● 乾燥器
● 混合／研磨／摻配
SAN產品

丙烯回收

丙烯

水懸浮試劑
催化劑

廢水

註：在方塊流程圖中具有●符號者表示是丙烯的可能排放點

圖6 SAN樹脂之懸浮聚合生產製程流程圖
苯乙烯
聚合反應器
丙烯
改質劑
廢水
催化劑

注：在方塊流程圖中具有●符號者表示是丙烯的可能排放點

圖7 SAN樹脂之連續式巨量聚合生產製程流程圖
2.2.3 ABS 树脂之生产(Acrylonitrile-Butadiene-Styrene Production)
请参考 2.3.5 節。

2.2.4 己二之生产(Adiponitrile Production)[2,6-8]

己二 (adiponitrile, ADN) 在工業上最重要的用途是作为生产己二胺(hexamethylenediamine, HMDA)的原料,而己二胺是生产尼龍 6,6 的二個主要原料之一。在工業上生产己二的主要方法有：(1)由己二酸生产己二 ；(2)由丁二烯生产己二 ；及(3)由丙烯生产己二，其中由丙烯生产己二的方法是由美国 Monsanto 公司所研发成功的。

美国 Monsanto 公司的方法称为电解二聚作用 (electro-hydrodimerization, EHD)製程[6,7]，它是利用电化学的方法在电解电池中电解丙烯，利用电能来促使化学反应发生，使得两个丙烯单体聚合成为一个己二分子，其阴極反應、陽極反應及總反應分別如下：

陰極反應：
$$2CH_2 = CH - CN + 2H_2O + 2e^- \rightarrow NC(CH_2)_4CN + 2OH^-$$

陽極反應：
$$H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$$

總反應：
$$2CH = CH - CN + H_2O \rightarrow NC(CH_2)_4CN + \frac{1}{2}O_2$$

丙烯
己二

在上述反應當中，H⁺離子會通過電解電池的薄膜由陽極到陰極與 OH⁻反應形成水。

Monsanto 公司在開發生此 EHD 製程的過程中，首先是由實驗室規模 (bench-scale)的研發，然後進入試驗工廠規模 (pilot-plant scale)，最後才進行己二 的工業量產規模 (Industrial scale)。M. M. Baizer 曾經對於如何在實驗室內使用 EHD 方法將丙烯轉化为己二的研究过程加以介绍[6]；D. E. Danly 則将 M. M. Baizer 在實驗室之研發成果加以發揚光大到試驗工廠。
規模及工業生產規模，使 EHD 方法能夠大量地應用到工業生產上面。茲將 Monsanto 公司有關己二胺工業生產上面的一些考量因素綜合整理如下:

(1) 陰極電極材料的選擇：對於陰極電極(Cathode)材料的篩選，鉛(Pb)被選擇作為陰極電極的材料；而陰極電解液(catholyte)的選擇則以四銨鹽(Quaternary Ammonium Salt, QAS)為主，包括有 tetramethylammonium p-toluene sulfonate(TMATS)、methyl-triethylammonium p-toluene sulfonate、tetraethylammonium ethyl sulfate (TEAES)等，其中以 tetraethylammonium ethyl sulfate (TEAES)之效率最佳。

(2) 陽極電極材料的選擇：對於陽極電極(anode)材料的篩選，銀(Ag)/鉛(Pb)合金被選擇作為陽極電極的材料；而陽極電解液(anolyte)則為稀硫酸溶液。

(3) 薄膜的開發(membrane development)：將陽極電解液及陰極電解液用一個隔膜(diaphragm)分開以限制丙烯、己二胺及四銨鹽等在陽極的氧化是必須的，所選擇薄膜的材料是在玻璃結構上使含有 sulfonate polystyrene 及 divinylbenzene 之共聚合物。

(4) 電池的設計：電池的設計目標供商業上的用途必須符合下列條件:

1. 低電位降(low voltage drop)
2. 高質量轉移速率(high mass transfer rates)
3. 足夠的薄膜支撐(adequate membrane support)
4. 阳極及薄膜之容易更換(ease of anode and membrane replacement)
5. 雙極之系列排列-所有均考量最低的建造成本(bipolar series arrangement-all at the lowest possible construction cost)
電池之設計通常為簡單的多層架(multilayer stacks)，依序包括有陰極電解液區、陰極、陰極分隔物、薄膜、陽極分隔物、陽極及陽極電解液區等部份。

(5) 質量轉移(mass transfer)；在陰極表面的質量轉移速率(mass transfer rates)對於由丙烯轉換成己二之電化學反應的產量會產生深遠的影響。實驗顯示，當使用鉛(Pb)作為陰極，而陰極電解液之速度為0.1米/秒時，在陰極所產生的氫氧離子(OH)會引發催化作用，而產生一些不是所希望發生的反應(undesirable reactions)，例如:

\[
2\text{CH}_2 = \text{CH} - \text{CN} + \text{H}_2\text{O} \rightarrow (\text{NCC}_2\text{H}_4)_2\text{O}
\]

Acrylonitrile

\[
\text{CH}_2 = \text{CH} - \text{CN} + \text{H}_2\text{O} \rightarrow \text{HOCH}_2\text{CH}_2\text{CN}
\]

Acrylonitrile

其中副反應物 Bis-cyanoethyl ether (BCE)及hydroxypropionitrile (HOPN)之產量可以高達60%。但是如果將陰極電解液之速度增加到1米/秒，則上述副產物之產量將會降低到6%。由此可見，增加在陰極表面界面層(bounday layer)之OH擴散速率(diffusion rate)可以降低生成BCE及HOPN之反應發生。

(6) 回收與淨化：除了開發電合成(electrosynthesis)技術外，己二(ADN)之回收及淨化系統的開發亦是同等重要的工作。在下游的製程步驟中，包含有使用逆向萃取法(countercurrent extraction)在陰極電解液中萃取己二，此時丙烯(AN)亦會同時被萃取出來，然後使用水來洗滌萃取物以便移除其中之四銨鹽(QAS)。在丙烯/己二相中，先用蒸餾的方式移除丙烯，再用真空蒸餾的方式將己二淨化。在整個流程中，除了己二及四銨鹽之萃取管柱外，尚有丙烯剝除器(stripper)、去除水及去除丙(propionitrile，PN)用之蒸餾管柱及四銨鹽濃縮器。由於在
鈷(Co)催化劑之下，從己二胺(HMDA)之反應，對於不純物之靈敏度極高，因此由EHD方法所產生之己二是必須具有高純度的要求，而經由測試之後証實利用EHD方法所產生的己二胺其純度極高。

(7) 工廠電流密度的考量

工廠的設計首先要考慮到的最佳化的工廠電流密度(optimal plant current density)，此是因為工廠之操作成本與電流密度有密切的關係。經測試結果，電流密度在0.4-0.6A/cm²時，工廠之操作成本最低。

(8) 己二胺(ADN)品質之驗証

由於Monsanto公司開發EHD方法之目的是利用丙烯直接合成己二胺，再由己二胺合成己二胺，最後由己二胺來大量生產尼龍，供商業之用。有鑑於此，經由EHD方法所產生的己二胺與標準物質己二胺所生產的尼龍，二者完全相同，亦就是利用EHD方法所產生之己二胺符合做為商業用途的標準。

有關Monsanto公司使用電化學方法製造己二胺的流程圖，請參考圖8。
圖 8 美國 Monsanto 公司使用電化學方法製造己二胺之流程圖

註：QAS=quaternary ammonium salt(四銨鹽)
2.2.5 丙烯醯胺之生產(Acrylamide Production)[5,9]

丙烯醯胺(Acrylamide)及其衍生物，如聚丙烯醯胺(polyacrylamide)等，在工業上有多方面用途，如可做為纖維之改良與樹脂之加工、紙力增強劑、沈降促進劑、土壤改良劑、土壤安定劑、塗料等。

丙烯醯胺(Acrylamide)是以觸媒法在反應溫度為70-140℃下使丙烯和水反應而製得，生成之丙烯醯胺含有未反應之丙烯，經蒸餾後回收使用。其化學反應方程式如下：

\[
\text{CH}_2 = \text{CH} - \text{CN} + \text{H}_2\text{O} \rightarrow \text{O} \\text{CH}_2 = \text{CH} - \text{C} - \text{NH}_2 \\
\text{T} = 70-140 \circ \text{C} \\
P = 2-5 \text{ kg/cm}^2
\]

丙烯醯胺之製造流程圖則如圖9所示。

2.2.6 丁 橡膠之生產(Nitrile Rubber Production)

請參考2.3.6節。
丙烯
水
水合反應
未反應之丙烯
分離
濃縮
精製
丙烯醯胺水
溶液產品

廢料(觸媒)
廢水
廢料(觸媒)

圖9 丙烯醯胺之製造流程圖
2.3 1,3-丁二烯在石油化學工業上的應用[10]

1,3-丁二烯(1,3-butadiene, BD)或簡稱為丁二烯(butadiene)在商業上的用途主要是作為下列六種物質的生產原料，即(1)苯乙烯-丁二烯橡膠(styrene-butadiene rubber, SBR)；(2)聚丁二烯橡膠(polybutadiene rubber, BR)；(3)己二胺(n adiponitrile)；(4)氯丁橡膠(neoprene rubber, CR)；(5)ABS樹脂(acrylonitrile-butadiene-styrene resin)及(6)丁腈橡膠(nitrile rubber, NBR)。本節所討論的內容是以丁二烯在美國之使用背景為主。丁二烯在美國之主要產品及其應用的樹狀結構圖，請參考圖10。

本節的重點是對於丁二烯在上述六種物質之生產製程給予較詳細的介紹，對於丁二烯在上述六種物質中之每一種物質之生產情形皆提供一個小節加以專門敘述，該述內容包括製程描述、污染排放等項目，而其中之污染排放則又細分為製程排氣口的污染排放、設備元件洩漏的污染排放、及二次污染排放等。

2.3.1 苯乙烯丁二烯共聚合物之生產(Styrene-Butadiene Copolymer Production)

苯乙烯丁二烯共聚合物(styrene-butadiene copolymer, SB Copolymer)是由無數的丁二烯及苯乙烯的單體(monomer)所組成。在生產製程中因為供給原料的組成成份不同及乾燥程度的不同，SB Copolymer可以是固體亦可以是乳狀液(emulsion)。

苯乙烯及丁二烯共聚合物之丁二烯含量大於45%時，該共聚合物較具有似橡膠的性質(rubber-like properties)，而當苯乙烯的含量增加到大於45%時，則該共聚合物具有較像塑膠的性質(plastics-like properties)。丁二烯含量大於45%之共聚合物有時被稱為苯乙烯丁二烯橡膠(styrene-butadiene rubber, SBR)；而苯乙烯含量較大者則可以被稱為苯乙烯丁二烯乳膠(styrene-butadiene latex, SB latex)。“彈性體(elastomer)”一詞是泛指固體的共聚合物。
苯乙烯丁二烯橡胶，SBR

聚丁二烯橡胶，BR

己二

苯乙烯丁二烯乳胶，SB Latex

丁二烯

氯丁橡胶, CR

ABS树脂

丁 橡胶，NBR

其他

輪胎及輪胎產品
機械橡膠物品
汽車相關物件
其他

汽車、貨車及公車輪胎
高度耐衝擊樹脂
其他工業產品

己二胺(生產尼龍6,6之原料)

地毯裏襯
紙張塗佈
油漆及其他

機械相關物件
工業橡膠物品
接著劑
電線電纜
乳膠
消費性產品
纖維橡膠

汽車相關物件
器具
出口
建築
其他
電子、商業機器及電磁通信
其他

水管、帶類及電纜
印章及墊圈
出口
在鑄模中製造的物品
接著劑及黏封劑
海綿
其他
穿在腳上的東西

圖 10 1,3-丁二烯之主要產品及其應用的樹狀結構圖
苯乙烯丁二烯乳膠(SB Latex)是彈性體的乳狀液。苯乙烯丁二烯橡膠(SBR)亦有被作為乳狀液使用的時候，其作為乳狀液的製程除了沒有對乳化狀況進行凝結(coagulation)或乾燥步驟以外，其餘皆和彈性體的製程相同。此外所指的乳膠(latex)一詞涵括 SB 乳狀液及 SBR 乳狀液二種。

苯乙烯丁二烯彈性體主要應用在輪胎工業，而乳膠則應用在像紡織、造紙及接著劑之製造等各種不同的行業。

1. 製程描述(Process Description)

彈性體之製造可以分為二種製程：(1)乳化製程(the emulsification process), 此製程是將單體散開在水中，及(2)溶液製程(the solution process), 此製程是將單體溶解於溶劑中。乳化製程比較常被使用。乳膠之製造和彈性體之製造頗為類似，只不過是在最後製程之生成固體共聚合物之前先被移除罷了。

有關苯乙烯丁二烯共聚合物(SB Copolymer)彈性體和乳膠生產製程的流程圖，請參考圖 11，整個生產製程共分為 6 個步驟，茲細述如下：

步驟 1：儲存的丁二烯及苯乙烯單體首先加以清洗以去除聚合反應時的抑制劑(inhibitors)。

步驟 2：經洗滌過的單體被充填入聚合反應器中，被充填入的單體和其他物質名稱、其重量百分比(weight percent)以及它們的功能，請參考表 1。

步驟 3：當聚合反應進行到所要的程度時，聚合物乳狀液(即乳膠)及未反應的單體將從反應器中移除。苯乙烯和丁二烯將會從乳膠中分離，並且回收至各自的儲槽。

步驟 4：在單體被移除之後，未完成的乳膠將要進行下列二種途徑中的一種。第一種途徑是將乳膠混合成均勻的乳狀液，並且以完成的乳膠方式儲存。
步驟 5：第二種途徑則包括一個凝結的操作。
步驟 6：凝結動作之後緊跟著清洗及乾燥，最後即為產生固體形式的聚合物。

2. 污染排放(Emissions)

苯乙烯丁二烯共聚合物(SB Copolymer)設施之排放源與一般化學生產設施之標準排放源相同，即：製程排氣口排放(process vent discharges)；設備元件洩漏(equipment leaks)；二次污染排放(包括廢水、液體廢棄物或固體廢棄物排放)；儲存相關排放(storage-related releases)；以及意外事故或緊急事故排放(accidental or emergency releases)。

丁二烯用於彈性體生產時大都儲存於壓力容器內，該容器之排氣口直接通到燃燒塔(flares)，如圖 11 中之 A 點。因此由於儲存所產生的污染排放將會是很低的。

(1) 製程排氣口之污染排放(Process Vent Emissions)

如圖 11 上之排氣口位置所示，製程排氣口之排放源為聚合反應器、單體回收器以及其他的反應容器，此種氣體的排放有可能是連續性的(在連續式的製程)或間歇性的(在批次式的製程)。某些連續式的製程在開工(startup)和停工(shutdown)或在控制設施故障或製程出狀況時皆會產生污染排放。圖 11 中之排氣孔 B, C, D, F 是這些製程排氣口的可能位置。雖然由於各廠的設計不同，排氣口的真實位置和丁二烯之含量可能會有所不同，製程排氣口的位置大都位於用來回收丁二烯之吸附管上。在某些情形製程排氣口會引導到工廠的其他部位或到作為燃料用之氣體回收系統，而不是直接排放到大氣中。

(2) 設備元件洩漏污染排放(Equipment Leak Emissions)

無論何時液體或氣體在製程中從設備中洩漏皆會從製程的設備元件中發生污染排放。丁二烯之污染排放是從下列設備元件中估算出來的，即泵軸封(pump seals)，製程
閥(process valves), 壓縮機(compressors), 安全釋壓閥(safety relief valves), 法蘭(flanges), 開口端管線(open-ended lines, OELs) 及採樣連接(sampling connections)。對於每一個設施，若設備元件之數目為已知，則其污染排放可以估算出來。

(3) 二次污染排放(Secondary Emissions)

不論在場內或場外，凡是處理或排放廢水、液體廢棄物或固體廢棄物的設施皆會發生二次污染排放，廢棄物之流動可能從圖 11 中之任何操作中產生。
苯乙烯及丁二烯聚合反应器

丁二烯回收

未完成的乳胶及单体

丁二烯回收

苯乙烯及丁二烯共聚合物(SB Copolymer)生产流程图

图 11
表1 SBR乳化狀況之標準處方

<table>
<thead>
<tr>
<th>成份</th>
<th>重量百分比</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>丁二烯</td>
<td>25.0</td>
<td>單體</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>10.0</td>
<td>單體</td>
</tr>
<tr>
<td>d-Isopropyl Benzene</td>
<td><0.1</td>
<td>催化劑</td>
</tr>
<tr>
<td>Hydroperoxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>硫酸亞鐵</td>
<td><0.1</td>
<td>活化劑</td>
</tr>
<tr>
<td>Tent-Dodecyl Mercaptan</td>
<td>0.1</td>
<td>改質劑</td>
</tr>
<tr>
<td>焦磷酸鉀</td>
<td>0.1</td>
<td>緩衝溶液</td>
</tr>
<tr>
<td>Rasin Acid Soap</td>
<td>1.4</td>
<td>乳化劑</td>
</tr>
<tr>
<td>水</td>
<td>63.0</td>
<td></td>
</tr>
</tbody>
</table>

資料來源：USEPA，Locating And Estimating Air Emissions From Sources of 1,3-Butadiene，EPA-454/R-96-008，November 1996.
2.3.2 聚丁二烯橡胶之生产(Polybutadiene Production)

就像苯乙烯丁二烯弹性体(SB elastomer)一样，聚丁二烯橡胶(polybutadiene rubber, BR)主要是使用於轮胎製造工业，但是亦有一些聚丁二烯橡胶是使用於耐衝擊性樹脂工業。

1. 製程描述

丁二烯的聚合反应可以产生数种异构物的聚合物[3]。在商业上较重要者为順式-1,4-異构物(cis-1,4 isomer)及1,2-聯結異构物(1,2 isomer)。大部份的聚丁二烯橡胶是经由溶液聚合製程(solution polymerization process), 少部份之聚丁二烯橡胶则是由乳化聚合製程(emulsion polymerization process)来生产。所选用催化剂的種類及反應条件將會决定所產生異構物的比例。

順式聚丁二烯橡胶之製程包括五个基本步骤:

步骤 1：丁二烯及溶剂之纯化(butadiene and solvent purification);
步骤 2：反应(reaction);
步骤 3：浓度(concentrations);
步骤 4：溶剤之移除(solvent removal); 及
步骤 5：乾燥和包裝(drying and packaging)。

图 12 為聚丁二烯生產之流程圖。

在步骤 1，由丁二烯储槽經除水過後之丁二烯與回收再利用之丁二烯蒸氣混合，溶剤(通常為己烷或環己烷)亦伴随著回收溶剤蒸氣進行除水的动作。在步骤 2，这些蒸氣被充填到聚合反應發生的反應器中，對於溶液聚合反應，像鋰、鈉、或鉀等將會被用作為催化劑，此製程之整體反應轉換率達到 98%。在步骤 3，從反應器之流出物被充填到濃縮器中，在濃縮器中，任何未反應的丁二烯將會被回收再利用。此時遺留在濃縮器中之产品包括溶解在溶剤中之聚丁二烯，通常被稱為"Cement"，在"Cement"流動液裏面包含極微量的丁二
烯單體。在步驟 4，在”Cement”裡面之溶劑被汽提掉，這些溶劑則被送往溶劑純化後回收再利用。汽提(Stripping)是經由直接蒸氣接觸發生的。

步驟 5 則是將聚二烯加以乾燥、壓縮及包裝。聚二烯橡膠之製程可連續式生產及批次生產，但大部份的設施皆進行連續式生產。

2. 污染排放

聚二烯生產製程中之丁二烯污染排放主要可分為四大類，即製程排氣口污染排放、設備元件洩漏污染排放、二次污染排放及意外或緊急排放。雖然在裝卸及運輸原料時有可能產生污染排放，丁二烯大都是儲存在有壓力的器皿內，該器皿之排氣口直接通到燃燒塔，如圖 12 中之 A 點，因此將會降低由於儲存所造成之丁二烯之污染排放。

以下為對於四大類之排放各別的討論：

(1) 製程排氣口之污染排放

製程排氣口之污染排放主要來自於對反應器中及其他製程器皿中不容易凝結的氣體加以驅除。其污染排放可能是連續式或間歇式。圖 12 中之排氣口 B, C, D, E, F 即為丁二烯釋放之排氣口位置，經由控制設施處理後之排氣口則在圖 12 中之排氣口 G。

(2) 設備元件洩漏之污染排放

設備元件洩漏之污染排放是由設備元件的數目，使用的時間，以及在製程中丁二烯之重量百分比等因素來估算。由於各廠之操作狀況不同，因此這些估算值僅能代表控制的某些標準。雖然有些工廠進行了視覺的監測但並未提供該等計畫的操作頻率或範圍，因此並無估計值可供比較參考，所以在使用估計值時應把這些不確定性列入考慮。
圖 12 聚丁二烯橡膠(Polybutadiene Rubber)生產製程圖
(3) 二次污染排放

废水的水流當中含有丁二烯，由於丁二烯之揮發性及在水中之低溶解度，因此假定該废水水流在流到其被送往的廢水池之前即已完全蒸發掉。

2.3.3 己二之生產(Adiponitrile Production)

己二(adiponitrile)在尼龍 6,6 生產上的重要性在於它氧化後生成己二胺(hexamethylenediamine, HMDA)，己二胺與己二酸(adipic acid, AA)為生產尼龍 6,6 之二種主要原料。

1. 製程描述

使用丁二烯作為原料來生產己二之製程都是使用連續式的生產。圖 13 為己二之生產製程圖，其詳細步驟如下：

步驟 1 : 在催化劑存在的情況下，添加氰化氫(hydrogen cyanide, HCN)，使丁二烯反應成戊烯(pentenenitriles)。

步驟 2 : 所產生之戊烯(pentenenitrles)繼續流經丁二烯管柱。

步驟 3 : 將催化劑移除。此時產生的戊烯(pentenenitriles)可以商業出售或再精製。

步驟 4 : 在製程中將戊烯(pentenenitriles)蒸餾以產生雙(dinitriles synthesis)。

步驟 5 : 在雙系統單元(dinitriles system unit)中，單(mononitriles)更進一步氰化反應，使轉換成雙(dinitriles)。

步驟 6 : 最終產生之含 6 個碳的雙(diritriles)則使用蒸餾法再加以精製。

最後的產品己二是被儲存在儲槽內，然後使用泵浦將己二經由管線送往氫化反應(hydrogenation)以產生己二胺(HMDA)。本製程之副產品被送往鍋爐燃燒，以便回收其熱。
值，單一的副產品則被作為商業產品出售。

2. 污染排放

從工廠的資料來看，丁二烯的污染排放源在整個系統中僅發生在催化劑移除步驟之前。丁二烯管柱之檢測數據顯示排放之丁二烯之重量百分比<0.02%，已有數據之排放源種類包括製程排氣口(如圖13中之排氣口B及排氣口C)，設備元
件洩漏、二次污染源，以及在丁二烯槽車裝載時洩漏估計。其他典型的污染源尚包括緊急排放或意外排放，以及與丁二
烯儲存(圖13之排氣口A)有關之污染排放。
丁二烯儲存

分離器

分子篩

1

反應器

2

丁二烯乾燥

至污水坑系統

催化劑

丙烷

至鍋爐

B

至燃燒塔

C

催化劑

移除

催化劑

移除

第二階段

反應

6

精製

己二

再生

液相有機副產品

污水坑系統

水相廢棄物

(至注射井)

圖 13 己二 之生產製程圖
2.3.4 氯丁橡膠之生產(Neoprene Production)

氯丁橡膠(neoprene rubber, CR), 又稱為聚-2-氯丁二烯(polychloroprene), 它是2-氯丁二烯(chloroprene或2-chlorobutadiene)聚合後的產品。氯丁橡膠主要用於汽車工業，如皮帶、電纜、水管及電線等。

1. 勞性描述

氯丁橡膠之生產是一個連續的製程，該製程是從丁二烯之氯化反應產生2-氯丁二烯開始。圖14是2-氯丁二烯單體之生產製程圖。其詳細步驟如下：

步驟1： 在氯化反應器中，丁二烯和氯氣在氣相中發生氯化反應，產生3,4二氯-1-丁烯(3,4-dichloro-1-butene, 3,4-DCB)；順式及反式-1,4-二氯-2-丁烯(the cis and trans isomers of 1,4-dichloro-2-butene, 1,4-DCB)；同時有未反應的丁二烯留存。

步驟2：主要是將1,4-DCB異構物轉化換成3,4-DCB，同時將未反應的丁二烯移除，這將在減壓條件及催化劑存在的情況下，在氯化反應及蒸餾管柱下執行。丁二烯可以被回收到氯化反應器中，而1,4-DCB則可以被回收或在其他地方使用。

步驟3： 在含水及氫氧化鈉的溶液裏面進行3,4-DCB去除氯化氫(dehydrochlorination)的步驟。

步驟4：2-氯丁二烯進一步精製，將2-氯丁二烯與未反應的3,4-DCB加以分離，未反應的3,4-DCB可以被回收至反應器中，2-氯丁二烯在整個反應過程中之產量(yield)通常大於95%。

2-氯丁二烯接著用來生產氯丁橡膠彈性體，圖15為氯丁橡膠之生產製程圖。2-氯丁二烯首先進行乳化反應(圖15之步驟1)。接著進行起始反應、催化作用及單體回轉作用(圖15之步驟2)。聚合物繼續經歷重合制止、聚合物穩定、單體回

EPA-88-U1J1-03-006 - 44 -
收及聚合物分離等步驟。最後所形成的乳膠可以直接出售或者將其乾燥及壓縮形成氯丁橡膠。

2. 污染排放

在氯丁橡膠之製程裏面，只有製程排氣口之污染排放、設備元件洩漏污染排放和緊急及意外排放之污染排放有資料可查，基本上從有壓力的儲槽裏面，丁二烯的污染排放是可以被忽略的。在某些輸送及操作過程中造成一些丁二烯之損失是有可能的。

(1) 製程排氣口污染排放

使用丁二烯作為原料來生產氯丁橡膠之二個廠，其製程排氣口污染排放僅限於到生產 2-氯丁烯之生產步驟。這些排氣口與氯化反應、DCB 精製及異構物化等步驟有關(如圖 14 中之排氣口 A 及 B)，而且是用來排除像氮氣等不可凝結的氣體。未反應之丁二烯在氯化反應之後被移除得幾乎很完全，因此在隨後的製程步驟裏面僅存在著很少的量。
丁二烯控制設施（如有裝置）

氯氧化鈉

氫

水

丁二烯

氯氣

氯化反應器

丁二烯回化

3,4-DCB回收

DCB=二氯丁烯
1,4-DCB=1,4-二氯-2-丁烯
3,4-DCB=3,4-2氯-1-丁烯

3,4-DCB精製及異構物化

2-氯丁二烯精製

2-氯丁二烯至聚合反應

氫氧化鈉

圖 14 2-氯丁二烯（Chloroprene）單體之生產製程圖
氯丁二烯儲存

乳化反應

聚合器

混合槽

催化劑

重合制止液

乳化劑

水

Weight Tank

圖 15 氯丁橡膠(Neoprene Rubber)之生產製程圖
2.3.5 ABS 共聚合物之生產(Acrylonitrile-Butadiene-Styrene Copolymer Production)

ABS 樹脂(acrylonitrile-butadiene-styrene resins)之用途可用來製造多種塑膠產品，包括汽車零件、導管、器皿、電話及商業機器等。

1. 製程描述

ABS 樹脂可由三種聚合製程來合成，即乳化製程(an emulsion process)，懸浮製程(a suspension process)及連續式巨量製程(a continuous mass process)。大部份之 ABS 樹脂的生產是使用批次乳化生產，特殊用途的 ABS 樹脂則使用懸浮製程來生產，批次乳化生產及懸浮製程生產大都在水溶液中進行。反之，連續式巨量生產-最新的技術，則不在水溶液中進行反應，如此將可以省去除水和樹脂乾燥的步驟，同時亦可減少廢水處理的體積。

(1) 乳化製程

圖 16 為 ABS/SAN 樹脂經由乳化製程之生產製程圖，本製程通常被稱為 ABS/SAN 製程，因為 SAN 是在一個副反應步驟中產生，然後與接枝型的 ABS 樹脂(graft ABS)混合。某些公司則將 SAN 以獨立的產品生產。

乳化製程包含有數個步驟，從將原料和水混合在水相中反應開始，到將成產品的樹脂純化和包裝為止。在最初的幾個步驟裏面，有三個聚合情形發生，即(1)丁二烯聚合為聚丁二烯乳膠；(2)苯乙烯和丙烯被接枝到聚丁二烯上面；及(3)苯乙烯丙烯共聚合物的形成。

大約有 70~90%的丁二烯單體被轉變成聚丁二烯，如圖 16 之步驟 1 所示。未反應的丁二烯單體則從快速汽提器 (flash stripper)裏面的乳膠中加以移除(圖 16 之步驟 2)，且通常予以回收。反應器、快速汽提及回收系統之排氣口通常是連接到燃燒塔或其他的燃燒設施。丙烯和苯乙烯接
枝到聚丁二烯受體上的反應方式(圖 16 之步驟 3)可以是批次反應或連續反應。反應中，單體之轉換率約為 90~95%。
從反應器中所產生的蒸氣通常被排放到丙烯吸收器(acrylonitrile absorber)，該吸收器再被排氣到大氣中或到一個焚化爐。

ABS 塑膠是接枝型的 ABS 橡膠和 SAN 樹脂的混合物。這些化合物的混合決定了 ABS 產品的性質。SAN 共聚合物是在另外一個單獨的副反應步驟中配製，配製好的 SAN 和接枝型的 ABS 在製程中二個反應位置中之一個位置被混合。SAN 乳膠亦有可能與接枝型 ABS 乳膠在凝結器(coagulator)中混合(圖 16 之步驟 4)。結成塊狀的聚合物是經由篩選(screening)(圖 16 之步驟 5)、離心(centrifuging)(圖 16 之步驟 6)、及真空過濾(vacuum filtration)(圖 16 之步驟 7)等步驟。不需要乾燥的步驟，但是有些設施是添裝一個乾燥器來取代離心分離機和真空過濾器。

另外一個反應方式為 SAN 乳膠可以分別先被凝結(圖 16 之步驟 8)及除水(圖 16 之步驟 9)，因而所導致的 SAN 固體樹脂和 ABS 樹脂機械式地混合(圖 16 之步驟 10)，經由一個複雜的步驟，固體樹脂和染料、抗氧化劑、及其他的添加劑被機械式混合(圖 16 之步驟 10)。從這些操作所得到的聚合物片則被製成顆粒及被包裝。

(2) 懸浮製程

圖 17 為 ABS 樹脂經由懸浮製程之生產製程圖，本製程之反應是由聚丁二烯橡膠開始，由於聚丁二烯橡膠僅有少量的交錯聯結(cross-linked)，因此聚丁二烯橡膠甚易溶解於丙烯和苯乙烯單體裏面。

聚丁二烯橡膠首先溶解於苯乙烯和丙烯單體來產生一個沒有交錯聯結之橡膠膠狀物(rubber gels)的溶液。

一個自由基(free radical)伴隨著鏈移轉試劑
(chain-transfer agents) 將會被加入在預先聚合器(Pre-Polymerizer)裏面之溶液中(圖 17 中之步驟 2)。在大約 25~35%之單體完成轉換時, 則漿狀的聚合物會被移轉到一個懸浮反應器中, 在這裡聚合物伴隨著攪拌被分散在水中。在達到所要的單體轉換之後, 產品被移轉到一個水洗 / 除水系統(圖 17 之步驟 4), 通常是使用一個連續的離心分離機, 聚合物則使用一個熱空氣之乾燥器加以乾燥(圖 17 之步驟 5)。

(3) 連線式巨量製程

圖 18 為連線式巨量 ABS 生產之生產製程圖。本製程是由聚丁二烯橡膠開始, 該聚丁二烯橡膠是溶解在含有起始劑(initiator)及改質劑(modifier)之苯乙烯和丙烯 溶液中(圖 18 之步驟 1), 然後 ABS 聚合物則經由相的轉換而形成, 相的轉換在預先聚合器中開始, 在這裏反應造成 ABS 橡膠從溶液中沉澱出來。當單體的轉換大約有 30%完成時, 此時所形成的漿狀物質(syrup) 將被移轉到巨量聚合器中, 在這裡單體之轉換大約在 50%~80%之間(圖 18 之步驟 3)。未反應的單體在真空的情況下於脫氣槽(devolatilizer) 裏面從溶劑的聚合物中被移開(圖 18 之步驟 4)。蒸氣狀態的單體被冷凝及回收到預先聚合器裏面, 然後 ABS 聚合物被擠壓出、在水浴中被冷卻(圖 18 之步驟 5), 以及被切割成顆粒(pellets)(圖 18 之步驟 6)。

2. 污染排放

在美國有 10 個生產 ABS 樹脂的工廠中至少有 4 個工廠不使用丁二烯作為起始原料, 而是使用聚丁二烯作為起始原料, 而使用的反應方式亦是使用懸浮製程或連線式巨量製程, 因此沒有丁二烯會從這些製程中產生。

(1) 製程排氣口之污染排放

丁二烯在製程排氣口之污染排放主要來自 ABS 乳
化製程中，在聚合反應槽中乳膠的快速汽提 (flash-stripping) 操作。隨著組成的改變，在批次反應器中排氣中之污染排放是有相當高的變化，大部份之排氣口皆有燃燒塔控制污染排放，燃燒塔之控制效率可以達到 99.9%。

在凝結及除水階段，以及在乳膠反應器裏面，丁二烯之污染排放亦會發生。圖 16 中之排氣口位置如下：排氣口 A 及排氣口 C 至 F 之污染排放皆直接與製程有關，而排氣口 B 則是在加裝控制設施之後的污染排放。
圖 16 ABS/SAN 樹脂經由乳化製程之生產製程圖

丙烯 苯乙烯

1

橡膠溶解器 預先聚合器 懸浮反應器 除水 乾燥器 產品及儲存

聚丁二烯橡膠 起始劑及攪拌 懸浮劑及水

圖 17 ABS 樹脂經由懸浮製程之生產製程圖(本製程不會產生丁二烯之污染排放)
圖 18 巨量 ABS 生產之生產製程圖(本製程不會產生丁二烯之污染排放)
2.3.6 丁 橡膠之生產(nitrile elastomer Production)

丁 橡膠(Nitrile Elastomer 或 nitrile-butyl rubber, NBR)被視為一種特用彈性體(specialty elastomer), 許多製造商生產丁橡膠主要是因為它具有抗油、抗溶劑及抗化學品等性質。丁橡膠之其他用途尚有用於水管、皮帶及電纜等之製造，同時亦可用來作為像印章、墊圈等經由鑄模的物品。

1. 製程描述

丁 橡膠是丙烯和丁二烯之共聚合物，丁 橡膠是經由乳化聚合反應(emulsion polymerization)產生，生產製程可以是批次生產或連續式生產。圖 19 為丁 橡膠生產製程圖。

乳化聚合反應使用水作為輸送介質(carrier medium)，製程之詳細步驟如下：

步驟 1：丁二烯和丙烯 單體用導管被輸送到攪拌的聚合反應器中，在聚合反應器中亦同時添加添加劑(additives)和肥皂。在這裏水不但作為反應介質，同時亦將反應所產生的熱量移轉到冷卻的反應器表面。添加劑則包括有 Cumene hydroperoxide，作為氧化劑之用；sodium formaldehyde sulfoxylate 及硫酸亞鐵 / EDTA 錯合物作為還原劑，及改質劑(烷基硫醇, alkyl mercaptans)。反應進行時間約 5-12 小時，由 sodium bisulfate 或 potassium dimethyl dithiocarbonate 所組成的重合抑制液視為產品所要的分子量大小，通常在反應單獨完成 75-90% 時加入反應器來終止反應。

步驟 2：反應生成的乳膠被送往一個洩料槽裏面，通常在此處添加抗氧化劑。

步驟 3：生成的乳膠將承受真空清除的過程，此處大部份未反應的丁二烯將被移除。
步驟 4：然後在真空狀態下進行蒸氣移除來去除剩下的丁二烯及大部份未反應的丙烯，未反應的單體則加以回收再利用。

步驟 5：經過去除單體之後的乳膠則在約 43~54 ℃ 之間使用泵将其抽往混合槽（blend tanks）。

步驟 6：經由真空清除或蒸氣汽提後的氣體裏面包含有丁二烯，這些氣體被送往一個部份冷凝器（不在圖 19 上）及分離器上，此處丁二烯蒸氣被冷凝，然後以液體狀態儲存。

步驟 7：從分離器出來之未冷凝的丁二烯蒸氣則通往一個吸收器，此處丁二烯與逆向流動的冰冷的油接觸，吸收器的底部則使用泵抽往一個快速槽（flash tank）（不在圖 19 上），同時溶解的丁二烯將會被釋放出來，以及回到壓縮機上。

步驟 8：在快速產生的蒸氣中之未反應的丙烯和乳膠汽提後之全部物質將經由把這些氣體送到一個含水的吸收器加以回收。

步驟 9：吸收器的底部和乳膠汽提後之全部物質的液相部份將使用泵抽至一個蒸氣汽提器上。從汽提器來的一切的蒸氣被冷凝回收在一個傾析分離器（decanter）裏面。相分離是被允許發生的，而丙烯相則被傾倒至儲存。在水相中所包含的丙烯則回到汽提器上面。

步驟 10：在步驟 5 中於混合槽中之乳膠被置放到一個凝結槽中，此處乳化反應將被添加像氯化鈉、硫酸鋁等稀的無機鹽溶液或弱有機酸。像泥漿一樣的精製的高分子碎片（fine polymer crumb）經由過濾來去除凝結的化學品（液體部份則可以回收），且同時亦有可能再度使其泥漿化，以便更進一步純化。
步驟 11： 高分子碎片經由擠壓機(extruder)完成除水。
步驟 12： 然後送往使用熱空氣的乾燥機乾燥。乾燥的橡膠經稱重，製成商品後出貨。如果乳膠是最終的產品，則包括凝結、篩選、清洗及乾燥等步驟就可以省略。最初的數個步驟對於乳膠和固體橡膠的生產基本上是一樣的。

2. 污染排放

丁 橡膠彈性體之污染排放數據是很有限的。有關緊急和意外排放，以及運輸/操作等所造成的污染排放沒有資料可查。由於是在有壓力之下將丁二烯儲存在儲槽內，因此由於儲存而造成丁二烯的污染排放量預期是很低的。

(1) 製程排氣口之污染排放

大部份的控制設施的設計除了可以減少丁二烯的污染排放外，亦可以有效地用來降低丙烯的污染排放，例如使用燃燒塔作為控制設施即為一例。潛在的排氣口位置如圖 19 中的排氣口 A 至 H。控制設施的效率在 89%至 99.9%之間。

(2) 二次污染排放

工廠之廢水、固體廢棄物及被污染的冷卻水被視為潛在的二次污染源。
丙烯

儲存

丙烯 冷凝
及儲存

丙烯 移除器

丙烯 吸收器

8

丁二烯

丁二烯吸收器

丁二烯儲存或回收

底部

至蒸氣移除器

丁二烯儲存

水，
丁二烯，
添加劑

抗氧化劑

A

B

C

F

G

聚合反應器
2

澱料槽
3

真空清除
4

乳膠蒸氣
移除器
5

混合槽
10

凝結
11

除水

12

H

乳膠

鹽類

乾燥

丙烯

和

水蒸氣

移除器

D

E

冰冷的油(chilled oil)

圖 19 丁 橡膠(Nitrile Elastomer)生產製程圖

EPA-88-U1J1-03-006 - 58 -
第三章 國內聚丙烯 纖維、ABS 樹脂及橡膠製造現況

國內聚丙烯 纖維製造廠計有台灣塑膠工業股份有限公司(以下簡稱台塑)仁武廠及東華合纖股份有限公司(東華合纖)新竹廠。ABS 樹脂製造廠有奇美實業股份有限公司(奇美)仁德廠、台灣化學纖維股份有限公司(台化)新港廠、台達化學工業股份有限公司(台達化)林園廠及國喬石化股份有限公司(國喬)高雄廠。橡膠製造廠有台灣合成橡膠股份有限公司(台橡)高雄廠，南帝化學工業股份有限公司(南帝)林園廠，台塑林園廠、李長榮化學工業股份有限公司(李長榮)小港廠及申豐化學工業股份有限公司(申豐)鳳山廠等，各廠丙烯及 1,3-丁二烯使用量及產品產量如表 2 及表 3 所示[11]，製程及生產現況分別敘述如下；此部份資料為摘錄各廠申報之製程改善、逸散減量及運作管理計畫書中部分資料和實地赴各廠現勘訪談整理而得。

3.1 聚丙烯 纖維製程

3.1.1 台塑仁武廠

台塑仁武台麗朗廠生產聚丙烯 纖維，其產品名為台麗朗纖維(tariylan)，建廠於民國 63 年，初期以兩系列(A, B 列)生產 N-Type 纖維，民國 64 年引進義大利 SNIA 公司之部份技術，66 年 C 列開車生產，E-Type 纖維。往後十幾年間，D、E、F、G、H1、H2、S2 系列陸續擴建完成，其中 D 列可生產複合纖維，其間於 70 年 A、B 列製程修改，改生產 E-Type。目前共計十系列，年產能 108,000 公噸，丙烯年使用量 98,400 公噸。

台塑仁武台麗朗廠生產製程區分為三大部份，1.聚合系統，2.回收系統，3.紡紗系統，製程流程圖參見圖 3。

1. 聚合系統：主要包含(1)調配單元；(2)聚合單元；(3)單體回收單元。

該廠製造丙烯 纖維，係採連續式溶液聚合法，即將丙烯(AN)及共聚物丙烯酸甲酯(MA)加上起始劑偶氮二甲基
雙戊（AVN），在二甲基甲醯胺（DMF）溶液中，於適當之溫度及均勻之攪拌下，聚合而成適於紡絲之聚合黏液（Dope）。

(1) 調配單元：
依所生產產品種類，將各種主副原料依特定比例在調配系統的調配槽中，作二~三段的調混，調配成單體溶液以供應聚合單元的進料。

(2) 聚合單元：
由調配系統送來的單體溶液進入聚合反應器，並加入觸媒溶液，在適當的溫度條件下進行三段聚合反應，反應終了產生的聚合黏液稱為Dope。Dope经單體回收及雜質過濾後，送往紡絲工場製成亞克力纖維。

(3) 單體回收單元：
Dope在送紡絲系統前需先經脫除器處理，以回收Dope中未反應的單體。脫除器又稱薄膜蒸發器，係利用低壓蒸汽的加熱及在45 Torr的真空度下，將Dope中殘餘的AN、MA、DMF蒸發回收。

2. 回收系統：主要包含(1)除水塔單元；(2)除酸塔單元；(3)除鹼塔單元；(4)渣液處理單元
在紡絲過程中，沖洗出來之DMF液，濃度在55%~58%，必須回收蒸餾使用，否則即形成嚴重的浪費，DMF回收系統設立的目標，即在回收紡絲過程中的DMF液並予以蒸餾至純度99.8%~99.95%，再供給聚合系統作為聚合時之溶劑。

(1) 除水塔單元
亞克力纖維生產過程中係以DMF為聚合反應之環境溶劑，DMF並不參與反應，故於紡絲系統生產過程中需以水將DMF自亞克力棉中洗出，其水溶液送回回收系統做DMF的純化蒸餾，利用水與DMF的沸點差異，做兩段式除水分離。
表2 各廠丙烯及1,3-丁二烯年使用量統計表

<table>
<thead>
<tr>
<th>製程</th>
<th>原料年使用量(公噸)</th>
<th>丙烯</th>
<th>1,3-丁二烯</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚丙烯纖維</td>
<td>台塑仁武廠</td>
<td>98,400</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>東華合纖新竹廠</td>
<td>48,960</td>
<td>-</td>
</tr>
<tr>
<td>ABS樹脂</td>
<td>奇美仁德廠</td>
<td>180,000</td>
<td>120,000</td>
</tr>
<tr>
<td></td>
<td>台化新港廠</td>
<td>42,000</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>台達化林園廠</td>
<td>12,000</td>
<td>9,500</td>
</tr>
<tr>
<td></td>
<td>國喬高雄廠</td>
<td>13,000</td>
<td>9,000</td>
</tr>
<tr>
<td>橡膠製程</td>
<td>台橡高雄廠</td>
<td>-</td>
<td>134,000</td>
</tr>
<tr>
<td></td>
<td>南帝林園廠</td>
<td>5,500</td>
<td>13,000</td>
</tr>
<tr>
<td></td>
<td>台塑林園廠</td>
<td>-</td>
<td>9,000</td>
</tr>
<tr>
<td></td>
<td>李長榮小港廠</td>
<td>-</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>申豐鳳山廠</td>
<td>300</td>
<td>4,000</td>
</tr>
<tr>
<td>合計</td>
<td>400,160</td>
<td>330,500</td>
<td></td>
</tr>
</tbody>
</table>
表3 各廠產品產量統計表

<table>
<thead>
<tr>
<th>製程</th>
<th>聚丙烯繊維</th>
<th>ABS 樹脂</th>
<th>橡膠製程</th>
</tr>
</thead>
<tbody>
<tr>
<td>工廠</td>
<td>台塑</td>
<td>東華</td>
<td>奇美</td>
</tr>
<tr>
<td>產品、產量(公噸)</td>
<td>仁武廠</td>
<td>新竹廠</td>
<td>仁德廠</td>
</tr>
<tr>
<td>10,8000</td>
<td>52,560</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAN 樹脂</td>
<td>-</td>
<td>-</td>
<td>70,000</td>
</tr>
<tr>
<td>ABS 樹脂</td>
<td>-</td>
<td>-</td>
<td>10,000,000</td>
</tr>
<tr>
<td>SBR 橡膠</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BR 橡膠</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TPE 橡膠</td>
<td>-</td>
<td>-</td>
<td>72,000</td>
</tr>
<tr>
<td>合成乳膠</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NBR 橡膠</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>耐衝擊改質劑(MBS)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
(2) 除酸塔單元：
DMF 水溶液經除水塔除水後可得純度近 100% 的 DMF，但因除水加熱過程產生酸解而伴隨有酸、鹼性物質的產生需加以去除，亦是利用其與 DMF 的沸點差異做蒸餾分離，經除酸塔後可得預期酸度的 DMF。

(3) 除鹼塔單元：
DMF 鹼性物質的去除係利用除鹼樹脂的吸附去除，經除鹼塔後可得預期鹼度的 DMF。

(4) 渣液處理單元：
DMF 水溶液經除水及除酸過程中，均於特定處利用 TIMER 的控制將部份高酸鹼度的 DMF 排出至渣液蒸發罐，利用低壓蒸汽加熱，高迴流比及適度真空條件的控制將大部份 DMF 回收及定時的渣液排放，排放渣液以焚化處理。

3. 紡絲系統包括：(1)紡絲單元；(2)後處理單元；(3)打包單元

(1) 紡絲單元：
紡絲係利用一定濃度的凝絲液將 polymer 中高濃度的溶劑洗出。
預延伸係利用槽內加熱器控制恆溫操作，將棉束熔融以利延伸調質。
水洗係利用水流與棉束 counterflow 逆流及各槽間濃度差，強迫棉束間溶劑排放出來，水洗槽內曝氣有利水與棉束接觸面積，加速洗淨。
前油係利用中間槽液位控制添加油劑量，並利用大量循環以穩定油劑濃度及棉束附油率。

(2) 後處理單元：
前後乾燥機利用機內溫度檢測，控制加熱溫度使於恆溫加熱狀態。
捲縮利用上下鋼板之壓力及側板壓力固定，以進入口
大於出口之方式推擠成波峰波谷各型。蒸縮利用直接蒸氣加熱及熱風循環蒸縮棉束。

(3) 打包單元：
擺絲有定轉速及定時間兩種控制方式，未來將統一改用定時間，即一定時間內進料量轉速一定，隨即停轉以求更精確的棉束包控制。
打包是利用油壓系統控制成壓壓力，以達到棉包紮實的目的。

3.1.2 東華合纖新竹廠
東華合纖新竹廠於民國 60 年 5 月開工運作，製程技術源自美國 Monsanto 經日本三菱嫘縈公司改進，以丙烯與醋酸乙烯脂(vinyl acetate)共聚合(co-polymerization)形成共聚合體，經紡絲成聚丙烯纖維，年產能 52560 公噸，丙烯年使用量約 48960 公噸，其製程方式與台塑製程類似，但在聚合過程使用之溶劑略有不同，其採用毒性較低之二甲基乙醯胺(DMAC)，而非二甲基甲醯胺(DMF)。

3.2 ABS 樹脂製造廠
3.2.1 奇美仁德廠
奇美仁德廠年產 ABS 樹脂 1,000,000 公噸，苯乙烯丙烯樹脂(styrene-acrylonitrile resin, SAN)70,000 公噸，TPE 橡膠 72000 公噸，丙烯年使用量約 180,000 公噸，1,3-丁二烯年使用量約 120,000 公噸，其 ABS 製造流程體系如下：

1. SAN製程 \(m(\text{苯乙烯}) + n(\text{丙烯}) \) 溶液聚合反應 SAN塑膠粒
2. PBL製程 \(n(\text{丁二烯}) \) 乳化聚合反應 聚丁二烯橡膠乳液(PBL)
3. ABS製程 \(n(\text{丙烯}) + m(\text{苯乙烯}) + \text{PBL} \) 乳化聚合反應 高橡膠含量之ABS粉
4. ABS押出 SAN塑膠粒 + ABS粉 押出機混練 ABS塑膠粒
1. 苯乙烯-丙烯共聚合樹脂(SAN)製程

此製程係將苯乙烯、丙烯、乙苯依組成打入單體混合器內，經反應器之聚合作用，生成 SAN 聚合物，然後經由脫氣槽將未反應之單體回收後，再將 SAN 押出冷卻切粒得 SAN 塑膠粒，製造流程圖參見圖 4。此製造程序分為以下六個系統：

(1) 單體製備單元

苯乙烯及丙烯 單體分別加入儲槽中，依一定比例將回收單體、苯乙烯及丙烯 進入單體混合器和單體配製槽配製成混合單體。

(2) 聚合反應單元

配製完成單體，加入分子量調節劑(TDDM)經單體冷卻器冷卻再進入反應器中，使苯乙烯及丙烯 聚合成 SAN 溶液。因聚合反應為放熱反應，故在反應器外有加裝一外部循環冷卻器，可吸收混合單體之顯熱，其具有特殊刮管裝置，可減少膠狀物附著於反應器，然而反應器容量仍會隨著時間而降低，所以須每隔一段時間清洗反應器一次。

(3) 脫氣反應單元

自反應器出來之聚合溶液，經過壓力控制閥減壓後，形成一種泡沫狀，再進入預熱器，以熱媒加熱後進入脫氣槽中，聚合物溶液由底部送入製粒區，而未反應之單體則進入單體回收區。

(4) 單體回收單元

自脫氣槽出來之未反應單體，經由冷凝器冷凝下來，收集在油水分離器中，回收之單體送回單體製備單元之回收儲槽再使用。

(5) 製粒區

由脫氣槽底部出來之 SAN 乳液，經過押出機押出成
型，押出成品則經水槽冷卻，再進入切粒機切粒，然後以押出鼓風機輸送至顆粒貯存區。

(6) 顆粒貯存及研磨區

製粒區所製成之 SAN 膠粒貯存於膠粒儲槽中，然後再轉送至顆粒研磨區之粉碎機，將膠粒磨成粉末，再傳送至 SAN 粉末儲槽。

2. 聚丁二烯橡膠乳液聚合製程(PBL)

本單元製程將丁二烯經鹼洗後，再以乳化聚合方法聚合生成聚丁二烯橡膠乳液，以供下一單元 ABS 粉製程使用，製造流程圖參見圖 12，此單元中主要設備說明如下：

(1) 鹼洗器

由於丁二烯含有抑制聚合之 TBC 抑制劑，因此在聚合之前須先以蘇打水鹼洗以去除抑制劑，而使用過之蘇打水可循環再使用，清槽時再更換鹼液。

(2) 聚丁二烯反應器

經鹼洗過後之丁二烯送入反應器中，並在反應器中加入乳化劑、起始劑及高壓蒸汽等，再分批聚合而成聚丁二烯。反應器內置一冷卻管，內通入液氨藉由液態變為氣態之吸熱作用，以控制反應溫度，並將氣態氨通入冷凍器中再回收使用。

(3) 汽提程序

由反應器產生之聚丁二烯，轉化率約 99%，因此含有 1%未反應之丁二烯氣提後送廢氣燃燒塔焚化處理。底部之聚丁二烯橡膠乳液儲存於聚丁二烯儲槽。

3. ABS 樹脂聚合製程

本單元製程係將聚丁二烯乳液，於丁二烯雙鍵上接上苯乙烯及丙烯，單體的乳化接枝反應，製造流程圖參見圖 16，此製程中主要設備說明如下：
(1) 混合單體配製槽

將欲參與接枝反應的苯乙烯及丙烯，分別自儲槽送至混合單體配製槽，進行配製。

(2) ABS 乳膠反應器

將聚丁二烯乳液、混合單體溶液、乳化劑、金屬促進劑及過氧化劑等溶液分別送入 ABS 乳膠反應器內，攪拌並升溫進行乳化接枝聚合反應。因聚合反應是放熱反應，故可經由反應溫度變化曲線，判斷反應進行的程度。反應溫度變化較大時，表示反應速率較快，當反應溫度由最高點開始下降表示反應已接近末期，再陳置一段時間以後，反應趨於完全可將聚合後 ABS 乳膠送至 ABS 乳膠調合槽混合貯存。

(3) 凝結脫水和乾燥製程單元

本單元係將接枝反應後中之 ABS 乳膠加入凝結劑使乳膠凝集後，再進行脫水與乾燥程序。

凝結槽

將 ABS 乳膠自 ABS 乳膠調合槽送至凝結槽，再加入凝結劑及低壓蒸汽，在適當攪拌及接觸後形成黏性較低的乳漿，再送至陳置槽，陳置一段時間後，形成黏性較高之乳漿，再送入乳漿槽中。

脫水機

將乳漿槽中 ABS 乳漿送入脫水機中脫水，脫水機除進行脫水之外，於脫水過程還加水將 ABS 洗滌，脫水產生液體由於含有 ABS 基本粉，故先於基本粉回收槽中將 ABS 基本粉回收至陳置槽再用。

乾燥床

經脫水後之 ABS 基本粉，仍含有部份的水份，將之送至乾燥床中，以熱空氣及熱水進行乾燥，乾燥後之 ABS 基本粉送至基本粉儲槽中。
(4) ABS 樹脂押出單元：

將 ABS 基本粉輸送至粉粒混合器，依照等級之不同，分別加入設定量之 ABS 粉、SAN 粉、化學品添加劑等，經高速混合後，送至押出機押出，而在押出過程中包含擠壓、加熱、融熔等步驟，經押出後之粉體成條束狀之 ABS 混合體，通過冷卻水槽固化後，再經切粒機切粒後，即得 ABS 樹脂成品，再輸送至 ABS 膠粒儲槽貯存。

3.2.2 台化新港廠

台化新港廠年產 ABS 樹脂 240,000 公噸，丙烯年使用量約 42,000 公噸，1,3-二烯年使用量約 20,000 公噸。其製程與奇美仁德廠製程大致上相同，僅在聚丁二烯橡膠乳液(PBL)製程上，奇美仁德廠直接在聚合反應器內脫除未反應之丁二烯單體送至廢氣燃燒塔，而台化新港廠則洩料至脫氣槽脫除丁二烯單體至回收系統冷凝回收，尾氣送至廢氣焚化爐焚化處理。

3.2.3 台達化林園廠

台達化林園廠年產 ABS 樹脂 60,000 公噸，丙烯年使用量約 12,000 公噸，1,3-二烯年使用量約 9500 公噸，其製程與奇美仁德廠相類似。

3.2.4 國喬高雄廠

國喬高雄廠年產 ABS 樹脂 60,000 公噸，SAN 樹脂 20,000 公噸，丙烯年使用量約 13,000 公噸，1,3-二烯年使用量約 9,000 公噸，其製程在 PBL 聚合上，未反應之丁二烯單體經汽提後，冷凝再回收使用，尾氣送至生物滴濾塔處理。
3.3 橡膠製程

3.3.1 台橡高雄廠

台橡高雄廠使用 1,3-丁二烯之製程包括苯乙烯丁二烯橡膠 (SBR)，聚丁二烯橡膠(BR)及熱塑性橡膠(TPE)等三個製程工場，年產 SBR 100,000 公噸，BR 52,000 公噸，TPE 54,000 公噸，1,3-丁二烯年使用量 134,000 公噸。

1. 苯乙烯丁二烯橡膠(SBR)

SBR 之製造是將苯乙烯及丁二烯依照一定比例與化液、水、活化劑、氧化劑、和調節劑等一起加入反應槽；以液氮為冷媒，進行低溫聚合，當反應轉化率達 63% 時，加入停止劑終止聚合反應，此時聚合物形成類似乳液般流體稱為乳膠(latex)。

乳膠中殘留的未反應單體(丁二烯、苯乙烯)，經閃沸、汽提等方式與乳膠分離而回收，再與新鮮單體重配使用，完成單體回收之乳膠送至摻合槽調整 Mooney 粘度，視產品種類添加擴展油、防老劑後，經凝聚、乾燥、壓塊、包裝過程，完成製造程序，製造流程圖參見圖 11。

2. 聚丁二烯橡膠(BR)

BR 製程是將丁二烯及苯依照一定比例進入乾燥塔去水份後送至反應器，丁二烯在反應器內藉 Co 系觸媒之作用於低溫進行聚合，反應溫度約 30~90 ℃，反應終了加入終止劑與水，使反應完全停止，生成之聚丁二烯乳膠經緩衝槽依規格標準適當摻合比例送至摻合槽均勻混合後出料至水混合槽，除去聚丁二烯乳液內灰分，再經過濾器，濾除其中之老膠及雜質。聚丁二烯乳膠經由凝結槽噴嘴造粒成碎屑狀，並脫除大部份的溶劑，再經中和及進一步汽提除去溶劑及未反應單體後，以脫水振動將除灰的碎屑狀聚丁二烯和含灰水分離之後，經由四個步驟製成乾燥的聚丁二烯橡膠，製造流程
3. 熱塑性橡膠(TPE)

TPE 橡膠是丁二烯與苯乙烯之共聚合物，亦是採用溶液聚合法，丁二烯與苯乙烯單體在環己烷之溶劑內與觸媒行聚合反應，反應完成後之膠漿經過濃縮回收部份溶劑，再送入摻合槽中加入擴展油及防老劑，然後經由濃縮及汽提以完全回收溶劑，經脫水、製粒、乾燥、包裝等過程後得到。

3.3.2 南帝林園廠

南帝林園廠年產合成乳膠約 24,000 公噸，丁橡膠(NBR)及 SBR 橡膠約 16,000 公噸，丙烯年使用量約 5,500 公噸，1,3-丁二烯約 13,000 公噸。

1. 合成乳膠

合成乳膠製程是將丁二烯、丙烯、苯乙烯及甲基丙烯酸甲酯等單體原料及其他配料利用計量器依不同品別配方需要量加入聚合反應器內，以熱水在聚合反應器之外水套加熱至配方所定的溫度後，加入起始劑引發聚合反應，反應生成後加入停止劑停止反應，反應完成之乳膠洩入回收槽回收未反應單體再使用，乳膠回收完成後進行濃縮脫除水份，再進行篩濾，篩濾出之凝聚物收集送焚化爐焚化，篩濾後乳膠即為成品。

2. 丁橡膠(NBR)

NBR 橡膠製程是將丁二烯及丙烯、苯乙烯及甲基丙烯酸甲酯等單體原料及其他配料利用計量器依不同品別配方需要量，加入聚合反應器內，以

NH₃(L)冷卻系統冷卻至配方所定之溫度後加入起始劑引發反應，反應完成後加入停止劑停止反應，反應生成乳膠洩入回收槽回收未反應單體再使用，乳膠回收完成後進行濃縮脫除水份，再進行篩濾，篩濾出之凝聚物收集送焚化爐焚化，篩濾後乳膠
於橡膠乳隙中之水滴，以蒸氣加熱循環空氣加熱橡膠顆粒，乾燥後橡膠粒經秤重計量、壓塊、包裝即為 NBR 橡膠成品，製造流程圖參見圖 19。SBR 橡膠製程與台橡類似，但其現在已停產。

3.3.3 台塑林園廠

台塑林園廠以 1,3-丁二烯作為原料的產品有耐衝擊改質劑 (MBS)，年產 25,000 公噸，1,3-丁二烯年使用量 9,000 公噸，其製程原理如下：

(1)1,3丁二烯
甲基丙烯酸甲酯 + (2)苯乙烯
(3)丙烯酸乙酯 → 一段聚合(45℃) MBS
二段聚合(60℃)

由主原料 + 副料反應後形成 MBS 乳漿，回收殘存氣體後(回收廢氣送至廢氣焚化爐焚化)，洩往儲槽以備鹽析。鹽析後形成之懸浮液(Slurry)再儲於 Slurry 儲槽待乾燥成粉體，經篩分包裝供下游廠商加工使用。

3.3.4 李長榮小港廠

李長榮小港廠年產熱塑性橡膠(TPE)29,000 公噸、1,3-丁二烯年使用量 12,000 公噸。

TPE 橡膠製程是苯乙烯及丁二烯兩種原料經純化後，放入聚合反應器，加入適當添加劑(環己烷等)在反應溫度為 30~150℃，反應壓力為 0-6kg/cm² 之操作條件下進行批次聚合反應，由於該聚合反應可控制至 100%反應(保守推估為 99%)，因此，聚合過程中不產生任何廢氣，然因聚合以環己烷作為溶劑，苯乙烯-丁二烯共聚物(TPE)及環己烷溶劑排出時，經回收塔(汽提塔回收)塔及冷凝器)去除大部分環己烷後，再經脫除塔(溶劑乾燥塔)再次回收環己烷，回收之環己烷溶劑送回環己烷儲槽循環再使用，經除去環己烷之苯乙烯-丁二烯共聚物(TPE)產品，再經脫
水乾燥器乾燥後再經包裝機包裝，即為成品。

3.3.5 申豐鳳山廠

申豐鳳山廠以丙烯及1,3-丁二烯作為原料生產的產品是合成乳膠，年產量20,000公噸，丙烯年使用量約300公噸，1,3-丁二烯4,000公噸，其生產製程與南帝林園廠合成乳膠相類似。
第四章 丙烯 及 1,3-丁二烯污染防制及排放現況調查

丙烯 在常溫常壓下為一無色液體，1,3-丁二烯是一種無色氣體，在工業使用上皆以液態處理，其在生產、使用或保存過程中，需在密閉或耐壓的儲槽、管線和反應器中進行，無法以一般容器盛裝，不易造成大量流布，但石化業製程此二種毒化物作為原料的使用量十分大，難以完全杜絕其流布於環境中，依其化學特性主要以氣體形態流布於環境中，僅丙烯極少量分布於水中，因此，聚丙烯纖維、ABS樹脂及橡膠等製造工廠，在對此二種毒化物的污染防制工作著重在排氣及逸散性(fugitive)防制上。本計畫實地赴各廠現勘及訪談，了解其毒化物減量及污染防制現況，並對可能之主要污染源進行採樣檢測。

4.1 聚丙烯 纖維製程毒化物污染防制現況

生產聚丙烯纖維的排放源依丙烯排放量大小分別是丙烯單體回收單元，紡絲及預延伸單元逸散性排放、製程廢水及廢棄物，上述中以丙烯單體回收尾氣及紡絲及預延伸排氣為最主要排放源，而所謂逸散性排放是指在裝卸與貯存操作之丙烯損失，及製程單元上泵浦、攪拌器、釋壓裝置、取樣連接系統、閥、法蘭之洩漏損失等逸散源。製程廢水於廢水處理場處理過程中造成丙烯逸散。廢棄物在溶劑回收再利用過程中進行蒸餾純化會產生重沸物(heavy ends)及輕沸物(light ends)等廢棄物，此部份含高濃度之丙烯及溶劑。

4.1.1 台塑仁武廠

台塑仁武台麗朗廠之丙烯紡絲及預延伸機排氣則以橫式吸收塔處理。逸散性排放中，丙烯貯存於7個固定頂槽，總容量為
24,000m³，為防天氣熱時槽內溫度升高，或槽車卸料時摻動而有丙烯 vapor 自槽頂呼吸閥排出，於槽區內裝設冷卻器七套，利用循環泵浦將槽內丙烯送出，在 cooler 處與冷凍水熱交換，降低槽內溫度，避免丙烯的揮發。

為避免槽車卸料時由槽車車頂 vent 排出丙烯 vapor 污染環境，因此製作一平衡管連接至槽車頂，如此可將丙烯 vapor 回收到槽車內，避免其由貯槽呼吸閥排出。廢水處理場集水池、原水池及曝氣池加蓋，避免丙烯及 VOCs 逸散，造成二次污染。含高濃度丙烯及 DMF 蒸餾殘渣和廢液送至該廠區廢棄物焚化爐自行焚化處理，但該廠所使用的泵浦仍採用單軸封，易造成丙烯逸散。

東華合纖新竹廠在製程中產生之排氣皆以洗滌塔處理，丙烯貯存槽共有 5 座，皆為內浮頂槽。其他單體回收尾氣、逸散污染源如廢水處理場，設備元件等皆未適當處理與改善。

4.2 ABS 樹脂製程毒化物污染防制現況

ABS 樹脂製程中丙烯及 1,3-丁二烯排放源分別是 1.SAN 製造單元的單體回收尾氣、製粒押出機廢氣及聚合反應器開槽清洗逸散。2.PBL 製造單元中的單體脫除及回收尾氣、反應器開槽清洗逸散及 PBL 過濾槽開槽逸散。3.ABS 乳化反應中的未反應單體脫除排氣及 ABS 乳膠乾燥廢氣。4.ABS 樹脂押出機排氣。5.逸散性排放如丙烯、丁二烯裝卸過程之損失，轉動機器之軸封洩漏，製程採樣設備及廢水中之逸散等。6.廢棄物如過濾及清槽產生之固體廢棄物，單體回收產生之廢渣廢液等。

4.2.1 奇美仁德廠

1. SAN 製程之單體回收尾氣及製粒區押出機廢氣經洗滌塔處理後排放。

2. PBL 製程之反應器及汽提排氣中未反應單體並未回收，直接
排至燃燒塔燃燒處理。
3. ABS 乳化反應中未反應單體脫除排氣、乾燥廢氣及 ABS 樹脂押出機排氣皆送至直燃式焚化爐焚化處理。
4. 丁二烯球槽屬高壓密閉容器，且入料時，槽車與球槽間有接上氣體回流管，可以減少丁二烯的洩漏。
5. 轉動機器之軸封皆採用無軸封式或雙軸封式，取樣系統皆為密閉式循環取樣系統，而廢水池皆加蓋減少 VOCs 的逸散。
6. 廢液、廢渣及固體廢棄物皆自行以廠內之廢棄物焚化爐焚化處理。

4.2.2 台化新港廠

台化新港廠共有乙座廢氣燃燒塔，乙座直燃式焚化爐及三座蓄熱式焚化爐處理廢氣。
1. 廢氣燃燒塔應用於丁二烯球槽及聚合反應器等壓力容器，設有安全閥，正常操作下不會有氣體排放，若壓力超過安全閥設定值，則經安全閥排放至廢氣燃燒塔處理。
2. 製程中產生含高濃度毒化物之低流量廢氣，如單體回收尾氣、貯槽逸散排氣、ABS 乳膠製程殘存未反應之單體等高濃度廢氣皆以直燃式焚化爐處理。
3. 低濃度之廢氣如 SAN 製粒押出機排氣，ABS 乳膠乾燥排氣，ABS 樹脂押出機排氣及廢水池加蓋抽引之廢氣皆引至蓄熱式焚化爐處理，三座蓄熱式焚化爐總處理量為 150,000 m³/hr。
4. SAN、PBL 及 ABS 聚合反應器開機清洗前以真空泵脫除殘存未反應單體送至直燃式焚化爐處理。
5. 轉動機器之軸封皆採用無軸封式或雙機械軸封式，取樣系統皆為密閉式循環取樣系統。
6. 單體回收單元產生之廢液送至焚化爐作為燃料。
4.2.3 台達化林園廠
1. 設有乙座廢氣燃燒塔處理異常狀況時丁二烯球槽、儲槽、聚合反應器等壓力容器排放之廢氣及 PBL 聚合反應器汽提未反應丁二烯單體之排氣。
2. SAN 製程未反應單體回收尾氣尚未處理，目前正著手規劃處理方式，此一尾氣含高濃度之丙烯及丁二烯。
3. 低濃度、高流量之製程廢氣皆以洗滌塔處理排放，但此處理技術對丙烯及 1,3-丁二烯之去除效率不佳。
4. 已將廢水池加蓋，逸散廢氣引至鍋爐燃燒處理，但鍋爐非 24 小時運作。泵浦改為無軸封泵浦，取樣系統改為密閉式取樣連接系統。

4.2.4 國喬高雄廠
1. 設有乙座燃燒塔作為製程異常時反應器壓力增加至安全閥設定壓力時，會釋放丙烯及丁二烯至燃燒塔燃燒。
2. ABS 乳膠製程凝集槽及陳置槽導入蒸氣將未反應單體汽提出來，以洗滌塔先行處理後通入生物滴濾塔再處理，但效果不佳。
3. PBL 製程聚丁二烯反應器轉化率約 90%，未反應丁二烯利用加壓冷凝方式回收，部份未冷凝尾氣使用媒油吸收塔來處理。
4. PBL 聚合反應單開槽清洗前先抽氣至負壓狀態，再加水加熱至 70℃，水約裝 70~80% 滿，水洩完後，再開蓋清洗。
5. PBL 乳膠內含有少量凝結物，在輸送管線設置有濾網過濾這些凝結物，隔天即須清理濾網，濾網開啟即造成未反應之丁二烯逸散，改用最新發展之 Latex Pump 可完全密封不須拆清濾網，可大量減少丁二烯逸散污染。
6. SAN 反應器及 ABS 反應器則在清槽前，以抽氣方式脫除未反應之單體，抽引之氣體送至生物滴濾塔處理，但去除率不
佳。

7. ABS 樹脂及 SAN 樹脂中仍殘留有未反應單體，故押出過程中，在模頭裝有抽氣機，將殘留單體排出送至淨化器或洗滌塔處理。

8. 廢水中含有未反應單體，已將廢水池密封加蓋，而逸散氣體將導入生物滴濾塔處理。取樣連接口採密閉迴流系統，然泵浦仍使用單機械軸封式，易產生明顯逸散。

4.3 橡膠製程毒化物污染防制現況

4.3.1 台橡高雄廠

台橡高雄廠使用之毒化物主要為 1,3-丁二烯，其污染防制現況如下：

1. 廢氣燃燒塔處理異常狀況之高濃度廢氣。
2. SBR 製程丁二烯與苯乙烯經反應槽產生乳膠，利用閃沸槽及汽提塔回收未完全反應之丁二烯及苯乙烯，經壓縮並冷凝回收，未冷凝之尾氣以柴油吸收處理。
3. SBR 乾燥機產生之廢氣送至鍋爐作為補充氣體焚化處理。
4. BR 製程丁二烯進入反應槽進行聚合反應，反應率達 60~70% 左右，未完全反應之丁二烯經汽提槽、凝結槽脫除收集後，以壓縮機壓縮及吸收塔吸收，尾氣併同振動篩及乾燥機排氣經活性碳床吸附處理。
5. TPE 製程的乾燥機排氣原先以洗滌塔處理目前已改為觸媒焚化處理。
6. 逸散排放主要來自廢水池，因丁二烯難溶於水，很快會逸散至大気，目該廠廢水池部份加蓋處理，但仍為主要的逸散來源之一，泵浦計畫三年內全部改為使用無軸封式或雙軸封式。
4.3.2 南帝林園廠
1. 乳膠製程丁二烯回收系統不凝結性氣體及製程、儲槽壓力容
器，若安全閥跳脫所產生之廢氣送至廢氣燃燒塔燃燒處理。
2. 乳膠製程反應槽抽真空時，真空泵排氣、濃縮槽濃縮蒸氣，
橡膠製程凝膠區逸散氣體排氣、脫水、乾燥等製程排氣經洗
濾塔處理後經生物滴濾塔進一步處理排放。
3. 原料桶槽及廢水池逸散產生之丙烯、丁二烯氣體，經加蓋
抽氣引至生物處理塔處理。
4. 工廠之泵浦皆使用雙軸封泵浦，取樣連接系統改為密閉式循
環取樣系統。

4.3.3 台塑林園廠
1. 耐衝擊改質劑(MBS)聚合反應槽反應之廢氣，收集引至直燃
式焚化爐處理。
2. 該廠當聚合反應終止時，以灌入 N\textsubscript{2} 將殘存於 LATEX 內的
丁二烯脫除以達到回收效果，清槽前再次以真空脫除未反應
單體。
3. MBS 乾燥機排氣以水洗塔處理後排放。
4. 設備元件逸散控制，輸送丁二烯原料所使用之泵浦皆採用雙
軸封型式無洩漏之虞，採樣系統增設密閉式循環取樣系統。

4.3.4 李長榮小港廠
1. 熱塑性橡膠(TPE)製程未完全反應之單體丁二烯及苯乙烯與
溶劑環己烷，經回收系統回收環己烷，未合成尾氣送廢氣燃
燒塔處理。
2. TPE 製程乾燥尾氣送至蓄熱式觸媒焚化爐(RCO)處理。
3. 設備元件逸散防制方面，丁二烯使用之泵浦，仍採單機械軸
封式，取樣系統尚未採用密閉式循環系統，皆易造成逸散。
4.3.5 申豐高雄廠

1. 合成乳膠製程中聚合反應器及乳膠中未反應之單體經脫除後併同原料儲槽逸散氣體及廢水池加蓋抽氣送至蓄熱式焚化爐處理。
2. 設備元件逸散方面，丁二烯使用之泵浦仍採用單機械軸封，取樣系統未採用密閉式，皆易造成逸散。
3. 該製程產生之合成乳膠需進行過濾處理，而過濾過程為開放式是主要的逸散源，該廠計畫引進高壓過濾器，可減少污染產生。

4.4 丙烯及1,3-丁二烯排放現況調查

由上述可知，各廠近年來對丙烯及1,3-丁二烯的污染防制工作不遺餘力的在執行，增設了多項相關的污染防制設備，但仍需改進及加強之處，急待各廠努力以減少毒化物的排放及逸散。為了解各廠在污染防治工作方面的成效及急待改善之處，本計畫針對部份工廠的主要排放源進行現場採樣檢測工作，聚丙烯纖維、ABS樹脂及橡膠製程主要排放源可歸納為

1. 聚合反應未中反應單體經加壓冷凝方式回收，部份未冷凝尾氣經處理或未處理排放。
2. 聚合反應器開槽逸散。
3. 廢氣處理設備排氣。
4. 廢水池逸散。檢測項目包括非甲烷總碳氫化合物(non methane THC)、丙烯及1,3-丁二烯，檢測方法簡要說明如下：

4.4.1 排放管道中THC及非甲烷總碳氫化合物檢測方法(NIEA A723.71B)

本方法概要為線上火焰離子化偵測法(Online FID)，排氣中之總碳氫化合物(THC)乃藉樣品通過無分離效果之空管後進入火焰離子偵測器(FID)測得，同時廢氣中之甲烷乃藉樣品通過會吸附非甲烷總碳氫化合物之分子篩吸附管後，進入FID偵測器測得再將測得之THC扣除甲烷後，即得非甲烷之總碳氫化合物。
物含量。所測得濃度以相當於校正氣體(甲烷)之體積濃度來作為濃度表示(as, Methane)。本方法適用於分析排放管道中總碳氫化合物(THC)及非甲烷總碳氫化合物(non Methane THC)含量之檢測。儀器設備如圖 20 所示，完整之檢測方法請參閱附錄二。

圖 20 NIEA A723.71B 檢測系統

4.4.2 排放管道中氣態有機化合物檢測方法(NIEA 722.70B)

排放管道中主要的氣態有機化物藉由採樣袋採集樣品後，以氣相層析管柱分離，並由火焰離子化偵測器或其他適合之偵測器檢測樣品中氣態有機化合物濃度。在相同氣相層析分離條件下，每一待測化合物的滯留時間和標準化合物之滯留時間比對，因此分析人員必須事先認知樣品內化合物成份及近似濃度。分析人員可根據這些資料準備標準溶液，以執行氣相層析...
儀檢測範圍之濃度校正。分析人員得視情況決定是否稀釋樣品以免超過氣相層析儀檢測範圍，並過濾樣品防止粒狀物進入氣相層析管柱。本方法檢測範圍約從 1ppm 直到氣相層析儀偵測器的飽和限值或管柱的負載上限值，視進樣系統而定；用惰性氣體稀釋排放管道氣體樣品，或採用較小之氣體進樣迴路，可以提高分析濃度上限，完整之檢測方法請參閱附錄二。

4.4.3 排放現況檢測結果

本計畫研究人員於 87 年 11 月至 12 月及 88 年 4 月間赴高雄林園、大社及仁武等工業區，對部份工廠的主要排放源進行現場採樣檢測，共計檢測聚丙烯 纖維製造廠 1 家，ABS 樹脂製造廠 2 家及橡膠製造廠 4 家，採樣方式是以 Teldar 採樣袋採集污染源氣體，在 24 小時內完成非甲烷總碳氫化合物之檢測工作，而丙烯 及 1,3-丁二烯則在 3 天內完成檢測，檢測結果如表 4 所示。另某些工廠在本計畫執行期間完成部份污染防制設備，如台化新港廠新建蓄熱式焚化爐(RTO)處理 ABS 製程廢氣，台橡高雄廠新建觸媒焚化爐處理 TPE 製程廢氣，及申豐高雄廠之蓄熱式焚化爐等自行委託代檢測業檢測排氣濃度，其處理效率及尾氣排放濃度如表 5 所示。由檢測結果對照"揮發性有機物空氣污染管制及排放標準"中製程排放管道標準如表 6 所示。因其中未反應單體回收尾氣皆遠高於管制標準，含高濃度之毒化物，工廠人員表示，其排氣小於 60Nm³/hr，可豁免不受管制，其排氣量小，難以測定排氣量，假設其排氣量為 1Nm³/min(60Nm³/hr)來計算，部份工廠此一污染源非總烷甲碳氫化合物每年排放可達 4.6~72.4 公噸，丙烯 3.4~9.0 公噸，丁二烯 6.8 公噸，甚至於更高，其排放量所含物質非一般 VOCs，而是毒化物氣體，實難任其任意排放。另在部份製程中較低濃度、高流量之廢氣未經適當處理或處理效率不佳，也造成 VOCs 及毒化物明顯之排放。此一現像以某些 ABS 製造
工廠較為嚴重，其主要廢氣排放源非甲烷總碳氫化合物每年排放量可達 259.3 公噸，丙烯 229.5 公噸。對照表 5 部份工厰
新設之處理設備其處理效率皆可達 97% 以上，採用之處理技術皆為焚化技術。可見就技術而言，工廠現行的處理技術及設備
若無法發揮應有的功能或基本上並不適用於 VOCs、丙烯 或丁二烯的去除，建議應仿效廸美仁德廠或台化新港廠將所有的
排氣皆以直燃焚化爐或蓄熱式焚化爐處理。聚合反應槽開啓所
造成之逸散污染亦是本計畫三種製程皆會面臨的問題，檢測
MBS 製程之聚合反應槽，其洩料後，反應槽內仍含有高濃度之
VOCs 及毒化物氣體，經脫除程序，將廢氣引至處理設備後，
其反應槽內 VOCs 及毒化物明顯減少，脫除效率可達 95% 以
上。從此次檢測調查結果顯示，各廠雖已致力於製程改善排放
及逸散減量工作，但仍有許多急待改善之處，以顯現具體之毒
化物減量成效。
表4 各廠主要排放源採樣檢測及排放量估算

<table>
<thead>
<tr>
<th>製程</th>
<th>污染源</th>
<th>排放量 (Nm³/min)</th>
<th>非甲烷總碳氫化合物濃度 (ppm, as methane)</th>
<th>丙烯濃度 (ppm)</th>
<th>1,3-丁二烯排放量 (T/Y)</th>
<th>純度</th>
<th>排放量 (T/Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚丙烯</td>
<td>未反應丙烯 單體冷凝回收尾氣經吸收塔處理</td>
<td>1</td>
<td>13426</td>
<td>4.6</td>
<td>3024</td>
<td>3.4</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>丁二烯</td>
<td>5.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ABS樹脂</td>
<td>SAN 製程未反應單體經冷凝回收的尾氣</td>
<td>1</td>
<td>213500</td>
<td>72.4</td>
<td>8058</td>
<td>9.0</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>SAN 製程製粒押出機排氣經洗滌塔處理</td>
<td>-</td>
<td>59.2</td>
<td>-</td>
<td>27.6</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>ABS 乳膠製程中低濃度高流量之廢氣經洗滌塔處理</td>
<td>132.4</td>
<td>574.7</td>
<td>25.8</td>
<td>87.2</td>
<td>12.9</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>ABS 乳膠製程廢氣經洗塔及生物滴濾塔處理</td>
<td>550</td>
<td>1386</td>
<td>259.3</td>
<td>372.3</td>
<td>229.5</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>SAN 製程製粒押出機排氣經洗滌塔處理</td>
<td>-</td>
<td>55.4</td>
<td>-</td>
<td>22.3</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>ABS 樹脂製程押出機排氣經洗滌塔處理</td>
<td>-</td>
<td>60.1</td>
<td>-</td>
<td>18.3</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>SBR 製程未反應單體經壓縮冷凝回收之尾氣以柴油吸收處理</td>
<td>1</td>
<td>50386</td>
<td>17.1</td>
<td>ND</td>
<td>5838</td>
<td>6.7</td>
</tr>
<tr>
<td>橡膠製程</td>
<td>BR 工場單體回收尾氣及乾燥機排氣經活性碳處理</td>
<td>-</td>
<td>65.2</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TPE 製程乾燥機排氣經洗滌塔處理*</td>
<td>-</td>
<td>275.5</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>合成乳膠製程排氣經生物滴濾塔處理</td>
<td>-</td>
<td>56.2</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>原料桶槽及廢水池逸散氣體經生物處理塔處理</td>
<td>83</td>
<td>282.6</td>
<td>7.9</td>
<td>ND</td>
<td>115.9</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>合成乳膠制程排氣經焚化爐處理前</td>
<td>-</td>
<td>103000</td>
<td>-</td>
<td>ND</td>
<td>26882</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>合成乳膠製程排氣經焚化爐處理後</td>
<td>-</td>
<td>34.4</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>耐衝擊改質劑(MBS)聚合反應器內氣體</td>
<td>-</td>
<td>61609</td>
<td>-</td>
<td>ND</td>
<td>1113</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>耐衝擊改質劑(MBS)聚合反應器內氣體</td>
<td>-</td>
<td>166303</td>
<td>-</td>
<td>ND</td>
<td>9090</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>耐衝擊改質剂(MBS)聚合反應器經脫除重演逸散</td>
<td>-</td>
<td>238.3</td>
<td>-</td>
<td>ND</td>
<td>47.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>耐衝擊改質剂(MBS)聚合反應器經脫除重演逸散</td>
<td>-</td>
<td>88.0</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
</tr>
</tbody>
</table>

註： "ND" 表示未檢出，偵測極限為 5ppm。

*本計畫執行期間已改為觸媒焚化處理
表5 部份工廠新設廢氣處理設備處理效率及排放濃度

<table>
<thead>
<tr>
<th>工廠</th>
<th>污染源</th>
<th>處理設備</th>
<th>處理前濃度（THC, ppm, as methane）</th>
<th>處理後濃度（THC, ppm, as methane）</th>
<th>去除率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>台化新港廠</td>
<td>ABS 低濃度</td>
<td>蓄熱式焚化爐</td>
<td>1721</td>
<td>36.3</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>高流量廢氣</td>
<td></td>
<td>1747</td>
<td>22.4</td>
<td>98.7</td>
</tr>
<tr>
<td>台橡高雄廠</td>
<td>TPE 乾燥機</td>
<td>觸媒焚化爐</td>
<td>2450</td>
<td>56.0</td>
<td>97.7</td>
</tr>
<tr>
<td></td>
<td>排氣</td>
<td></td>
<td>2472</td>
<td>61.0</td>
<td>97.5</td>
</tr>
<tr>
<td>申豐高雄廠</td>
<td>合成乳膠製程廢氣</td>
<td>蓄熱式焚化爐</td>
<td>188988</td>
<td>517.7</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>排氣</td>
<td></td>
<td>221761</td>
<td>372.4</td>
<td>99.8</td>
</tr>
</tbody>
</table>

表6 石化製程之排放管道管制標準

<table>
<thead>
<tr>
<th>污染源類別</th>
<th>VOC 去除率</th>
<th>VOC 濃度</th>
</tr>
</thead>
<tbody>
<tr>
<td>空氣氧化單元與蒸餾操作單元</td>
<td>新設立者</td>
<td>□ 95%或 □ 100ppm</td>
</tr>
<tr>
<td></td>
<td>已設立者</td>
<td>□ 90%或 □ 150ppm</td>
</tr>
<tr>
<td>其他石化製程單元</td>
<td>新設立者</td>
<td>□ 95%或 □ 150ppm</td>
</tr>
<tr>
<td></td>
<td>已設立者</td>
<td>□ 90%或 □ 200ppm</td>
</tr>
</tbody>
</table>

上列各單元，污染防制設備若採非破壞性物料回收處理方式者，VOC 去除率 □ 85%或 □ 300ppm。

註：1. 挥發性有機物(VOCs)：係指非甲烷有機化合物成份之總稱
2. 不適用本標準規定：
 (1) 產製食用酒精之製程。
 (2) 以石化中間產品為原料進行物理加工之製程。
 (3) 排氣中揮發性有機物排放量小於 350mg/min(as methane)之批次操作製程。
 (4) 排氣流量小於 60Nm³/hr 之連續操作製程。
3. 既存污染源應於民國 88 年 1 月 1 日符合規定。
第五章 可行的毒化物排放及逸散控制技术

聚丙烯纖維、ABS樹脂、橡膠等製造工廠排出之毒化物丙烯、1,3-丁二烯，甚至於揮發性有機物(VOCs)。除了對工廠附近人畜健康、農作物生長，可能有不良的影響外，目前研究也指出與酸雨形成、臭氧層破洞、溫室效應等全球性環境惡化有極大的關係，因此，將工廠排放的毒化物及VOCs去除，是刻不容緩的工作。

「最佳可行控制技術」(Best Available Control Technology，以下簡稱BACT)一詞係源於美國。依美國環保署對BACT之定義：『BACT是一排放限制，此一限制係基於，主管審核當局，在依業者案例個別情形而考量的基礎上，在受到空氣清淨法案中法令限制下，對於任何由主要排放設施所可能排放或導致的每一種污染物，透過製造程序變更或可行控制方法、系統、技術的選擇，及使用清潔燃料或更新燃料組合技術的方法，將能源、環境、經濟上的衝擊及其他成本列入考慮之後，用以控制特定污染物，達成該排放設施所能達到的最大程度削減量。』

BACT 定義中的最大削減程度(maximum degree of reduction)，係由一套五步驟Top-Down程序所決定：
第一步驟：申請者(applicants)必須考慮過所有可以利用、選擇的污染防治技術，即使是那些在技術上或經濟上並不合理，或是從未被使用於該類製程廢氣防治上的控制系統。
第二步驟：申請者將技術上不適合的方案去除。　
第三步驟：將可行控制方案依其處理效率排列，將最有效率的方案列於最前面。
第四步驟：申請者自行評估每一控制方案的能源消耗，環境影響與經濟衝擊。
第五步驟：在經過能源消耗，環境影響與經濟衝擊等各方面的考慮後，申請者所選定之技術即可稱為該廠之BACT。

至MACT之意義，根據美國環保署"Guidelines for MACT Determinations"中，對於MACT的解釋：『MACT係指處理效率最佳的前12%的控制技術中，排名最低的技術，或是使用於既有排放污染源中處理效率最佳的12%中，所使用的技術之一。』

5.1 可行之控制技術

針對本計畫研究的三種製程的污染控制技術進行全盤性探討，摘錄環保署"揮發性有機污染物處理效果暨成本分析"研究內容[12]，列舉管道VOCs排放源之各種控制技術原理、控制效率優缺點及經濟因素，並配合污染源排放特性據以進行控制技術之可行性評估，從而尋求最佳可行控制技術。

5.1.1 直燃焚化

利用燃料燃燒產生之熱量，對污染物進行高溫氧化反應(攝式900度以上)，將VOCs轉變為二氧化碳及水等無害物質，熱焚化處理技術如圖21所示，其原理乃是以高熱將有機廢氣氧化，因此其它與焚化法(RTO焚化或觸媒焚化)被認為是有機廢氣污染物之最終處置技術。其優點是將氣態有機排放廢氣安全地、有效地處理去除，適用於組成不同之有機廢氣，去除效率可達98%以上。焚化器之煙道氣排放時溫度高，應考慮熱回收，典型的熱回收型包括煙道氣與廢氣熱交換(廢熱回收預熱冬季焚化處理之排放廢氣)或燃燒空氣與製程熱交換(回收煙道氣至製程，產生熱水或蒸汽)。排放廢氣若含有機鹵化合物或硫化合物時，則燃燒後之煙道氣含二氧化硫及鹽酸，必須使用額外之控制系統(洗滌塔)。以熱焚化法處理之排放廢氣通常不須以
空氣稀釋，排放廢氣中若氧含量小於 20% 或熱值大於 13 Btu/scf 時，則須外加稀釋空氣。此外，含有氯氣或空氣及可燃性氣體之排放廢氣，可燃性氣體之濃度一般限制在小於 25% 爆炸下限值 (LEL)。

![焚化器示意圖]

圖 21 焚化器示意圖

焚化器設計時最重要之參數為焚化溫度及滯留時間，此二設計參數決定一焚化器之處理效率，此外去除效率亦受擾動度 (turbulence)、排放廢氣混合度及熱燃燒氣流之影響。一般而言，氯化有機化合物較一般無氯化取代基的有機物難氧化，因此焚化氯化有機物廢氣須用較高之溫度及較長之滯留時間。焚化器操作問題大都出在噴嘴 (burner)，如低噴火速率、不良的燃料氣化、不良的空氣 / 燃料比、不正確的空氣供應以及火焰被熄滅，因此用於控制有機廢氣污染物的焚化器系統必須設有連續溫度監測設備。處理效率降低的徵候包括產生黑煙或連續溫
度監測系統指出燃燒室溫度下降，若有問題發生應速採補正措施。為求得最佳操作條件及維護條件，使用者只能依經驗法則調整焚化器。

5.1.2 蓄熱式焚化 (Regenerative Thermal Oxidizer；RTO)

處理方法同直燃式焚化爐，惟其以利用多床可蓄熱材質之燃燒室進行蓄熱與焚化互相切換之方式，以大幅減少熱量之使用及 NOx 之產生。RTO (如圖 22 所示) 為焚化處理技術之一，其原理是以高熱將有機廢氣完全氧化，去除效率可達 95% 以上，此處理技術與熱焚化 (直燃) 或觸媒焚化的主要差別在於廢熱回收的型式和效率。一般對熱交換效率的設計要求：觸媒焚化器為 50%，熱焚化器為 70%，RTO 則可高達 80%~95%。RTO 的熱回收方式屬於熱再生 (thermal regenerative)，是利用陶瓷材料的高熱傳導係數特性做為熱交換介質以得到較完整的熱能傳導率。含 VOCs 或臭味的製程排放廢氣在通過一已經回收廢熱之陶瓷填充床預熱後，其廢氣溫度幾乎達到燃燒設定溫度並使部份 VOCs 產生氧化作用，然後導入燃燒室升溫並維持在設定溫度以達到設計預定的去除效率 (destruction efficiency)，經焚化處理後的廢氣導入其他的陶瓷填充床回收熱能後排到大氣中，其排放溫度僅略高於廢氣處理前的溫度，所有的陶瓷填充床均循序做加熱、冷卻、淨化的循環。RTO 焚化處理技術適用於熱回收率需求高且無其他製程可利用做為熱交換回收程序，製程排廢氯氣量大 (~12,000 SCMM) 且濃度低，或含有鹵素碳氫化合物及其他具腐蝕性之 VOCs。
5.1.3 觸媒焚化

觸媒焚化處理技術，如圖 23 所示，是利用觸媒將廢氣中揮發性有機物氧化成二氧化碳及水的污染控制技術。觸媒是一種可在設定溫度下提高反應速率，但本身卻無任何顯著變化的物質。一般而言觸媒焚化技術是無法處理含有鉛、砷、磷、鉭、銦、汞、氧化鐵、錫、銅、有機矽及含硫化合物、含氯化合物之 VOCs 廢氣，因為這些物質會被轉換成無機物或氧化物而覆蓋在觸媒表面，造成觸媒中毒或導致活性衰退，除非這些化合物在廢氣中之濃度非常低，或有前處理系統將這些化合物除去。此外處理含硫化合物廢氣可使用含有鉑和鈀的觸媒，處理含氯化合物廢氣可使用含有金屬氧化物（氧化鋁/氧化鉻、氧化鈷、氧化銅/氧化鎂）的觸媒。焚化器觸媒床之觸媒形狀通常設計成金屬網狀、陶瓷蜂巢狀、球狀或粒狀等以獲得最大表面積。廢氣在進入觸媒床前常以預熱器預熱，或與處理過之廢氣進行熱交換，但須避免觸媒床過熱而使觸媒失活。此外廢氣中要有適量的氧氣（即 O₂ ≥ 20%），否則必須補充燃燒用空氣。目前大多數商業化觸媒焚化設備都以 95%的去除效率為設計標
準，對更高之去除效率，因要較大量之觸媒或更高之操作溫度，觸媒焚化法將不符合經濟效益。

觸媒焚化器之性能受到下列因素之影響：(a)操作溫度，(b)空間速度(滯留時間之倒數)，(c)VOC的成份及濃度，(d)觸媒性質，和(e)廢氣中毒性物質及抑制劑之濃度。基本上，觸媒焚化技術不適用於廢氣熱值(空氣+VOCs)高於10 Btu/scf或VOCs濃度過高之廢氣，若使用觸媒焚化來處理，在廢氣氧化時會產生大量熱能，易造成觸媒床溫度過高而使觸媒失活。此時要用空氣來稀釋廢氣以降低VOCs的濃度，使其熱值低於上述之極限值。另外，含有氧氣或空氣及可燃性氣體之排放廢氣，可燃性氣體之濃度必須小於其25%的低爆炸極限值(LEL)。觸媒焚化器之重要設計參數有：

1. 觸媒床入口之操作溫度

為達到一固定去除效率所需之操作溫度係由廢氣中VOCs的成份及濃度和所用觸媒種類所決定。

2. 觸媒床之升溫

觸媒床上之溫差或上升溫度值是VOCs氧化的直接證據，也是觸媒焚化器的基本效率指標。

3. 在有充分氧氣供應下之空間速度

在固定空間速度下，提高觸媒床入口操作溫度，可提高去除效率；在固定操作溫度下，降低空間速度(即增加廢氣在觸媒床中之滯留時間)，也可提高去除效率。觸媒床上之壓力差可用做觸媒體積之指標。

觸媒焚化器之處理效率與觸媒床上之溫差及壓力降有非常密切的關係，為了確保觸媒床操作正常，一般都會連續監測觸媒床上之溫度上升及壓力降變化。由於觸媒會隨操作時間而失活、流失或被遮蔽，導致觸媒床處理效率下降，此時觸媒床會有溫度上升值及壓力降值降低的徵狀，使用者需立即反應以便維護改善，通常製造廠商大都建議每2到3年更換觸媒一次。
5.1.4 濕式洗滌

利用添加藥劑之液滴捕集塵粒及廢氣中之有害物質進
行氧化及中和反應，以去除污染物質；濕式處理設備之型式，
大致可分成兩類，一類為將洗滌液霧化，使其與廢氣接觸，如
噴水式洗滌塔、旋風式洗滌塔及文式洗滌塔；另一類係將洗滌
液散佈於裝有隔板、填充物之裝置內，使廢氣迂迴通過；常用
者為隔板式、罩泡式及填充式洗滌塔。濕式處理設備的主要構
造有洗滌塔本體、氣、液體接觸機制、藥液槽、藥液唧筒及濃
度控制(pH 計)、藥品的溶解攪拌設備及送風機等，影響其處理
效率的主要因素則在於洗滌液之選擇及洗滌塔氣、液接觸系統
之設計。

5.1.5 活性碳吸附等吸附劑吸附

所謂「吸附」係利用活性碳等吸附劑本身表面之作用力，
對廢氣中之污染物進行捕集與吸附，其最大特點為能在符合經
濟條件之操作範圍內，幾乎可完全去除廢氣中適合吸附之污染
物至吸附飽合，故其控制效率佳，適合處理含低濃度多雜質之
有機溶劑或臭味，為十分普遍之氣態污染物控制設備，其吸附
能力之強弱及吸附量之多寡，則由吸附劑及被吸附物本身之性
質而定；常見的吸附劑有活性碳、矽膠、沸石等，目前較為普遍使用的吸附劑為活性碳，另如欲以該設備處理含高濃度有機廢氣如甲苯時，則應考慮增設脫附再生及回收設備，使填充之吸附劑得重覆進行吸附作用，方符合經濟成效；脫附再生設備之型式有固定床、流體化床、濃縮轉輪等型式，其再生技術可分為兩類：(1)熱處理再生法(2)化學處理再生法。

5.1.6 冷凝回收

此法為將氣狀有機污染物之溫度降至其露點，此時其在氣體中之分壓等於蒸氣壓，可將有機污染物冷凝為液體，而將之回收再利用或引入廢水場處理；使用之冷凝器一般分為表面式或接觸式，表面式之氣體與冷凝劑以熱交換器隔開，接觸式則為氣體與冷凝劑(空氣、水或其它)直接互相接觸；本設備適合處理高濃度之有機廢氣，並已於石化工業如硝酸、氯氣、清潔劑、溶劑、去油(degreaser)、乾洗、製藥等製程中普遍應用。

5.1.7 生物處理

主要為在常溫常壓下利用微生物將污染物氧化分解成二氧化碳、水或無害之鹽類，同時利用污染物之碳源為能量來源。故其具操作方便，能量消耗小且將污染物分解為無害物質之優點；生物處理法基本的生化轉化反應如下所示，污染物質經處理設施中培養的微生物氧化分解，微生物轉化成細胞物質，另產生二氧化碳及水微生物雖然一直在消耗，但也一直在繁殖，這之間可取得平衡。

\[
\text{微生物} \\
\text{污染物質} + O_2 \rightarrow \text{細胞物質} + CO_2 + H_2O
\]

常見的處理法有生物濾床(biofiltering)、生物洗滌法(bioscrubbering)及滴濾塔法(biotrickling)三種，現目前較常採用者為生物濾床，生物滴濾塔次之，生物洗滌塔則尚於實驗階
段；其各處理方法說明如下：

1. 生物濾床法

生物濾床法為生物處理法中最常被使用的方法，已作廣泛商業應用，在美國有 50 座，歐洲則有約 500 座。其處理方式為先將排氣中對微生物有害之物質去除後，使污染氣體與生物床中填充物質作充份接觸，污染物溶解或吸附於填充物表層之生物膜後，為膜內微生物所分解：此法之優、缺點如下：

<table>
<thead>
<tr>
<th>生物濾床優點</th>
<th>生物濾床缺點</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 對低濃度空氣污染物和臭味物質之去除率高。</td>
<td>(1) 濾床內填充物質如有阻塞或分佈不均勻等情形，易產生管流 (Ch-annelling) 現象，會降低處理效果。</td>
</tr>
<tr>
<td>(2) 能處理進流濃度不穩定之氣流，容忍度大。</td>
<td>(2) pH 值和營養份較不易控制在理想範圍內。</td>
</tr>
<tr>
<td>(3) 無二次污染問題。</td>
<td>(3) 如濾材無法維持適當含水率低時，微生物活性會降低、甚或死亡而減少處理能力。</td>
</tr>
<tr>
<td>(4) 設備裝設及操作成本低。</td>
<td></td>
</tr>
</tbody>
</table>

2. 生物洗滌法

其處理方式為分兩階段進行：

(1) 污染物之吸收／捕集：

先將排氣中水溶性臭味成份和吸附於懸浮微粒中污染物於洗滌塔中為活性污泥混合液吸收或捕集。

(2) 污染物之分解

吸收下來之污染物，於活性污泥曝氣槽中為微生物分解後，其污泥混合液再被循環使用。

本法之優缺點如下：
生物洗滌塔優點

可處理較高濃度之 (1) 污染物之水溶性需較佳。

污染物。（2）較之生物滴濾塔，須有一較大體積之生物污泥反應槽，且需有一攪拌設備，能量消耗較大，污染物亦有再逸散之可能。

3. 生物滴濾塔法

此法原是用在廢水處理上，其處理方法為氣體中污染物為循環液吸收及捕集後，被附著於濾材上固定生物膜中之微生物氧化分解。此法與生物洗滌法之區別，在於其吸收與生物分解為同時進行。其生物膜代謝模式，如圖 24 所示，即氣態汙染物擴散至水膜再進入生物膜進行分解反應，生物所需之營養鹽則由循環水供應，生物反應後生成之水和二氧化碳再分別擴散至水膜和氣相中，其優、缺點如下：

<table>
<thead>
<tr>
<th>氣相</th>
<th>水膜</th>
<th>生物膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂、氣態污染物</td>
<td>N,P</td>
<td>惰性濾材</td>
</tr>
<tr>
<td>CO₂</td>
<td>CO₂</td>
<td>H₂O</td>
</tr>
</tbody>
</table>

圖 24 生物膜代謝模式
生物滴濾塔優點

(1) 對中、低濃度氣流中的污染物之去除有效。
(2) 生物滴濾塔法是一簡單但完整的處理系統。
(3) 其設置和運轉成本低廉且操作簡易。
(4) 降低一般處理時可能產生的殘留物, 即無二次污染物。

生物滴濾塔缺點

進流中含過量有機物,
將使生物膜之有機負荷超過其分解能力時
系生其它臭味物質。

上述有關各種 VOCs 已商業化技術之特性及其效率與成本之比較則見表7與表8。

5.1.8 設置成本及操作成本

環保署“揮發性有機空氣污染物處理效果暨成本研究”，研究報告中^{12}，利用國內廠商所提供 VOCs 處理設備之設置實例，依各商業化技術種類彙整於表9~13，其中包含設置成本及操作成本可提供本計畫相業者參考。
表7 各種臭味及VOCs已商業化處理技術之特性

<table>
<thead>
<tr>
<th>控制技術</th>
<th>優 點</th>
<th>缺 點</th>
</tr>
</thead>
</table>
| 直燃焚化 | 1. 適合廣範圍的可燃性污染物
 2. 對高濃度廢氣輔助燃料用量少，能源效率佳
 3. 污染物破壞效率高
 4. 有能源回收之可能性
 5. 可處理臭味氣體 | 1. 對低濃度廢氣，燃料成本高
 2. 操作溫度有回火或爆炸危險
 3. 不完全燃燒時可能產生黑煙
 5. 可能衍生NOx, SOx問題 |
| RTO焚化 | 1. 熱回收率高(>90%)且燃料消耗量低
 2. 可處理風量大(~12,000 scmm)且濃度低之廢氣 | 1. 設置成本高
 2. 不適用VOCs濃度高之廢氣，因需移走大量熱量。
 3. 不適合含粒狀物之廢氣
 3. 可處理含有鹵素碳氫化合物及其他具腐蝕性之VOCs |
| 觸媒焚化 | 1. 操作溫度較熱焚化低
 2. 燃料消耗量較少
 3. 污染物之破壞率高
 4. 沿製程改變之操控性佳
 5. 可處理氣態或揮發性污染物至相當低濃度 | 1. 觸媒易被毒化
 2. 對某些污染物成份及濃度有所限制(含砂.磷.鉛.氯.錫廢氣不適)
 3. 不適合含粒狀物之廢氣
 4. 有火災之危險性 |
| 活性碳 | 1. 能源需求低
 2. 具備吸附回覆的性能
 3. 隨製作流程之操控性佳
 4. 可處理氣態或揮發性污染物至相當低濃度 | 1. 如無再生系統，無法重複使用，且廢棄之吸附劑需再處理
 2. 不適用高濃度廢氣
 3. 不適合含水份之廢氣
 4. 排氣可能造成白煙問題
 5. 有火災之危險性 |
| 吸附 | 1. 能源需求低
 2. 適合多種污染物
 3. 有溶劑回收的可能性
 4. 隨製程改變之操控性佳
 5. 可處理氣態或揮發性污染物至相當低濃度 | 1. 投資成本有可能高
 2. 不適合低濃度廢氣
 3. 產生廢水造成二次污染
 4. 產生廢水造成二次污染
 5. 維護費高 |
| 湿式洗滌 | 1. 能源需求低
 2. 適合多種污染物
 3. 對臭味有高去除效率
 4. 能同時處理氣態及粒狀污染物
 5. 可處理氣態及揮發性污染物至相當低濃度 | 1. 潤滑性混合物易溶於水氣中
 2. 只適合高濃度廢氣
 3. 有機溶劑去除效率有限 |
| 冷凝 | 1. 使用間接式冷凝法可回收高純度物質
 2. 費用低且操作容易 | 1. 高濃度廢氣去除效率有限
 2. 有機溶劑去除效率有限 |
| 生物處理 | 1. 低投資成本
 2. 低操作成本
 3. 無二次污染物 |
表8 各種VOCs已商業化技術效率與成本之比較

<table>
<thead>
<tr>
<th>控制技術</th>
<th>低濃度廢氣</th>
<th>高濃度廢氣</th>
<th>溫度</th>
<th>可處理流量(scmm)</th>
<th>濃度範圍(ppm)</th>
<th>備</th>
<th>註</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱焚化</td>
<td>高</td>
<td>高</td>
<td>中</td>
<td>650~1000</td>
<td><2700</td>
<td>>20</td>
<td>適合高濃度廢氣 (<25%LEL)</td>
</tr>
<tr>
<td>觸媒焚化</td>
<td>高</td>
<td>中</td>
<td>中</td>
<td>200~400</td>
<td><2700</td>
<td>25~10000</td>
<td>適已知成份之低濃度廢氣 (<25%LEL)</td>
</tr>
<tr>
<td>活性碳吸附</td>
<td>高</td>
<td>高</td>
<td>中</td>
<td>780~820</td>
<td>8~5400</td>
<td><10000</td>
<td>適變異成份之低濃度廢氣 (<25%LEL)</td>
</tr>
<tr>
<td>湿式洗滌</td>
<td>極低</td>
<td>高</td>
<td>高</td>
<td>常溫</td>
<td>27~2700</td>
<td>250~10000</td>
<td>適變異成份之高濃度廢氣</td>
</tr>
<tr>
<td>冷凝</td>
<td>極低</td>
<td>高</td>
<td>中</td>
<td>常溫</td>
<td><540</td>
<td>>5000</td>
<td>適已知成份之高濃度廢氣</td>
</tr>
<tr>
<td>生物處理</td>
<td>中</td>
<td>低</td>
<td>低</td>
<td>低溫 (＜露點)</td>
<td><2430</td>
<td><1000</td>
<td>適低濃度生物可分解之廢氣</td>
</tr>
</tbody>
</table>

註: 1. 廢氣濃度(g/m³): 低<3, 高>5
2. 效率(%): 低<80, 中=80~95, 高>95
3. 成本(元新台幣/噸 VOC): 低<5000, 中=5000~15000, 高>15000
4. 以美金: 台幣=1：25 拆算

資料來源：
1. VOC Newsletter 1-10Issues, KWS 2000-Project Bureau, the Netherlands, 1990-1993
2. 有害空氣污染物最佳可行控制技術 (BACT) 電子半導體實例分析，P135, 工業污染防治第 58 期，1996.4
表9 直燃式焚化爐設置資料表

<table>
<thead>
<tr>
<th>編號</th>
<th>設置名稱</th>
<th>引進國</th>
<th>可處理污染物</th>
<th>處理濃度</th>
<th>處理能量</th>
<th>去除率</th>
<th>設置行業</th>
<th>處理之污染物</th>
<th>濃度</th>
<th>風量</th>
<th>去除率</th>
<th>初設成本</th>
<th>操作成本</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>廢熱回收焚化</td>
<td>美國</td>
<td>VOCs,HAPs,Odors</td>
<td><1500</td>
<td>100-500000</td>
<td>99</td>
<td>石化廠,電子</td>
<td>苯,甲苯 various</td>
<td>10000</td>
<td>99</td>
<td>1960</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TAR</td>
<td>德國</td>
<td>VOCs</td>
<td>1000-50000</td>
<td>98</td>
<td>400</td>
<td>20000</td>
<td>98</td>
<td>汽車塗裝</td>
<td>VOCs</td>
<td>500</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>直燃式焚化爐 DFI</td>
<td>本土製造,塗裝之烤漆爐廢氣</td>
<td>30-300</td>
<td>95</td>
<td>瑞利企業</td>
<td>有機溶劑</td>
<td>60</td>
<td>99</td>
<td>半導體</td>
<td>IPA 200</td>
<td>600</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>直燃式焚化爐</td>
<td>加拿大</td>
<td>VOCs,Odors</td>
<td>100-5000</td>
<td>99</td>
<td>石化業</td>
<td>VOCs</td>
<td>1000</td>
<td>500</td>
<td>99</td>
<td>700</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>沸石濃縮轉輪+直燃</td>
<td>美國</td>
<td>VOCs,Odors</td>
<td>100-2000</td>
<td>95</td>
<td>半導體</td>
<td>IPA</td>
<td>200</td>
<td>850</td>
<td>95</td>
<td>2900</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

註：初設成本易因使用材質與工廠本身特性而有所變化其值僅供參考
<table>
<thead>
<tr>
<th>設備 / 儲存名稱</th>
<th>引進國</th>
<th>可處理污染物</th>
<th>濃度 PPM</th>
<th>處理風量 CMM</th>
<th>去除率 %</th>
<th>實績業別</th>
<th>處理污染物</th>
<th>濃度 PPM</th>
<th>風量 CMM</th>
<th>去除率 %</th>
<th>新台幣 萬元</th>
<th>新台幣 萬元</th>
</tr>
</thead>
<tbody>
<tr>
<td>催化熱氧化法 CTO</td>
<td>美國</td>
<td>VOCs,HAPs,Odors</td>
<td>100-3000</td>
<td>300-170000</td>
<td>98</td>
<td>化工廠</td>
<td>CH3CI</td>
<td>various</td>
<td>128000</td>
<td>98</td>
<td>3360</td>
<td>280</td>
</tr>
<tr>
<td>觸媒式脱臭設備</td>
<td>日本 (觸媒)</td>
<td>塗裝烤漆爐廢氣</td>
<td>30-1300</td>
<td>30-1300</td>
<td>99</td>
<td>東元電機</td>
<td>臭味,有機溶劑</td>
<td>10000</td>
<td>60</td>
<td>99</td>
<td>450</td>
<td>150</td>
</tr>
<tr>
<td>蓄熱式觸媒焚化爐</td>
<td>日本 (RCTO)</td>
<td>Odors,VOCs</td>
<td><=25% LEL</td>
<td>70-1300</td>
<td>99</td>
<td>電子半導體業</td>
<td>甲苯,二甲苯,丙酮,丁酮</td>
<td>25</td>
<td>1550</td>
<td>99</td>
<td>4500</td>
<td>90</td>
</tr>
<tr>
<td>沸石濃縮轉輪+觸媒焚化爐</td>
<td>美國</td>
<td>Odors,VOCs</td>
<td><1000</td>
<td>100-2000</td>
<td>>95</td>
<td>半導體</td>
<td>IPA</td>
<td>200</td>
<td>850</td>
<td>95</td>
<td>2900</td>
<td>150</td>
</tr>
<tr>
<td>觸媒燃燒焚化爐</td>
<td>日本</td>
<td>VOCs,碳氫化物</td>
<td>注意 LEL</td>
<td>1-1200</td>
<td>>90</td>
<td>漆包線, 汽車塗裝, 化纖</td>
<td>B.T.X,Phenol, 10-1000, 5-1200</td>
<td>90-95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HONEYCAT VOCs</td>
<td>美國</td>
<td>VOCs</td>
<td>99-99.5</td>
<td>PTA 廠</td>
<td>BrCH3,VOCs</td>
<td>2000</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>常溫觸媒</td>
<td>美, 日, 本地</td>
<td>VOCs</td>
<td>100-100000</td>
<td>100</td>
<td>化工(樹脂)</td>
<td>有機溶劑</td>
<td>2000</td>
<td>200-400</td>
<td>100</td>
<td>90-900</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

註：初設成本易因使用材質與工廠本身特性而有所變化, 故其值僅供參考
表11 活性碳/吸附劑吸附設置資料表

<table>
<thead>
<tr>
<th>編號</th>
<th>活性碳/吸附劑吸</th>
<th>引進國</th>
<th>可處理污染物種類</th>
<th>處理濃度</th>
<th>處理能量</th>
<th>去除率%</th>
<th>設置行業</th>
<th>處理之污染物</th>
<th>設置實績</th>
<th>濃度</th>
<th>風量</th>
<th>去除率</th>
<th>初設成本</th>
<th>操作成本</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>吸附</td>
<td></td>
<td></td>
<td>PPM</td>
<td>CMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>活性碳吸附</td>
<td>美/本土</td>
<td>VOCs, HAPs, Odors</td>
<td>0-2000</td>
<td>100-200000</td>
<td>98</td>
<td>電子業</td>
<td>CFC-114, 1-1 Trichloroethanes</td>
<td>200</td>
<td>16000</td>
<td>98</td>
<td>1500</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>活性吸脫附</td>
<td>美</td>
<td>分離回收</td>
<td>高濃度 VOCs</td>
<td>2000-4000</td>
<td>2400-3000</td>
<td>>99</td>
<td>美</td>
<td>MEK, Toluene, cyclohexanone</td>
<td>4000</td>
<td>2400</td>
<td>4050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>H2S, NH3, (CH3)2S, VOCs</td>
<td>1-1000</td>
<td>10-2000</td>
<td>90-99.9</td>
<td>垃圾焚化廠</td>
<td>H2S, NH3, CH3SH</td>
<td>200</td>
<td>434</td>
<td>99</td>
<td>460</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>VOCs</td>
<td><300</td>
<td>50-1000</td>
<td>90</td>
<td>製罐</td>
<td>IPA, MEK</td>
<td>200</td>
<td>500</td>
<td>90</td>
<td>380</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>臭味及有機廢氣</td>
<td>200</td>
<td>>85</td>
<td></td>
<td>橡膠</td>
<td>VOCs</td>
<td>200</td>
<td>85</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>VOCs</td>
<td></td>
<td></td>
<td></td>
<td>汽車</td>
<td>漆粒及有機溶劑</td>
<td>150</td>
<td>4600</td>
<td>95</td>
<td>600</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>VOCs, 臭味</td>
<td>40-600</td>
<td>90</td>
<td></td>
<td>電子,</td>
<td>漆粒及有機溶劑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>活性碳吸附</td>
<td>本土製造</td>
<td>醇.酮脂.氯仿</td>
<td></td>
<td></td>
<td></td>
<td>PC板</td>
<td>IPA</td>
<td>200</td>
<td>95</td>
<td>150</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

註：初設成本易因使用材質與工廠本身特性而有所變化，故其值僅供參考
表12 混式洗滌塔設置資料表

<table>
<thead>
<tr>
<th>編號</th>
<th>設備名稱</th>
<th>技術/設備名稱</th>
<th>引進國</th>
<th>可處理污染物種類</th>
<th>處理濃度</th>
<th>去除率</th>
<th>設置實績</th>
<th>處理之污染物濃度</th>
<th>風量</th>
<th>去除率</th>
<th>初設成本</th>
<th>操作成本</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>臭味洗滌設備</td>
<td>本土製造</td>
<td>H₂S, NH₃</td>
<td>>50</td>
<td>1080</td>
<td>99.8</td>
<td>樹脂</td>
<td>H₂S, NH₃,</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>濕式化學洗滌塔</td>
<td>美國</td>
<td>H₂S,NH₃,CH₃SH,(CH₃)₃H</td>
<td>1-1000</td>
<td>>200</td>
<td>99.9</td>
<td>污水處理廠</td>
<td>H₂S, NH₃</td>
<td>10-25</td>
<td>600</td>
<td>99.9</td>
<td>650</td>
</tr>
<tr>
<td>3</td>
<td>濕式洗滌中和塔</td>
<td>本土製造</td>
<td>天然橡膠、烤漆廢氣</td>
<td>80-1000</td>
<td>>90</td>
<td>橡膠</td>
<td>硫化氣</td>
<td>80</td>
<td>>90</td>
<td>200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>濁式填充塔</td>
<td>本土製造</td>
<td>酸鹼廢氣</td>
<td></td>
<td></td>
<td></td>
<td>半導體</td>
<td>酸鹼</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>濁式洗滌塔</td>
<td>本土製造</td>
<td>甲醇、甲苯、MEK、DMF</td>
<td></td>
<td></td>
<td></td>
<td>合成皮</td>
<td>甲醇、甲苯</td>
<td>1500</td>
<td>1000</td>
<td>>90</td>
<td>800</td>
</tr>
<tr>
<td>6</td>
<td>濁式化學洗滌塔</td>
<td>本地,德國</td>
<td>H₂S, NH₃, HCl</td>
<td>>95</td>
<td></td>
<td></td>
<td>半導體</td>
<td>HCl</td>
<td>30</td>
<td>1300</td>
<td>95</td>
<td>1500</td>
</tr>
<tr>
<td>7</td>
<td>濁式化學洗滌塔</td>
<td>本土製造</td>
<td>H₂S, HCl, HF</td>
<td></td>
<td></td>
<td></td>
<td>化工廠</td>
<td>酸氣</td>
<td>100</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>濁式洗滌塔</td>
<td>本土製造</td>
<td>水溶性酸氣</td>
<td></td>
<td></td>
<td></td>
<td>化工廠</td>
<td>Cl₂,SO₂</td>
<td>1000</td>
<td>90</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>廢氣填充洗滌塔</td>
<td>本土製造</td>
<td>H₂S, NH₃,HCl,Cl₂,SO₂</td>
<td>75-99</td>
<td></td>
<td></td>
<td>合成皮</td>
<td>MEK</td>
<td>300</td>
<td>95</td>
<td>145</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>濁式洗滌塔</td>
<td>本土製造</td>
<td>臭味、氣狀污染物</td>
<td></td>
<td></td>
<td></td>
<td>皮革</td>
<td>臭, H₂S</td>
<td>300</td>
<td>95</td>
<td>145</td>
<td>5</td>
</tr>
</tbody>
</table>

註：初設成本易因使用材質與工廠本身特性而有所變化，故其值僅供參考
表13 生物處理設置資料表

<table>
<thead>
<tr>
<th>編號</th>
<th>生物處理</th>
<th>引進國</th>
<th>可處理污染物種類</th>
<th>處理能量</th>
<th>設置行業</th>
<th>處理之污染物</th>
<th>濃度</th>
<th>風量</th>
<th>去除率</th>
<th>初設成本</th>
<th>操作成本</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>生物濾床</td>
<td>本土製造</td>
<td>VOCs,Odors</td>
<td>90</td>
<td>半導體</td>
<td>VOCs</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>350</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>生物濾床</td>
<td>本土製造</td>
<td>VOCs,Odors</td>
<td><300</td>
<td>橡膠加工</td>
<td>硫化廢氣</td>
<td>292</td>
<td>90</td>
<td>150</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

註：初設成本易因使用材質與工廠本身特性而有所變化，故其值僅供參考
5.2 毒化物排放控制措施

參考上一節美國環保署對 BACT/MACT 定義之精神研擬最佳可行毒化物排放控制技術，MACT 係指處理效率最佳的 12%的控制技術中，排名最低的技術或使用於既有排放污染源中處理效率最佳的 12%中，所使用的技術之一。國內聚丙烯纖維、ABS 樹脂及橡膠製程的工廠中，就丙烯及 1,3-丁二烯毒化物，甚至其他 VOCs 的處理技術和設備而言，幾乎每家工廠皆有廢氣燃燒塔，處理緊急排放及少量高濃度廢氣。但其處理量有限非常態處理技術，一般商業化處理技術，上一節所介紹之直燃焚化、RTO 焚化，觸媒焚化、活性碳吸附、濕式洗滌吸收、冷凝及生物處理技術等皆有工廠採用。各項 VOCs 處理技術及本計畫參與之工廠使用情形彙整於表 14。丙烯及 1,3-丁二烯皆屬於 VOCs，上述處理技術大都適合此二化合物，但濕式洗滌吸收技術對丙烯具處理效果，丁二烯則因揮發性及低水溶性處理效果不佳，同様的對生物處理技術而言，丙烯可達 95%以上去除率，但 1,3-丁二烯約僅有 30%去除率。而直燃焚化、RTO 焚化及觸媒焚化是本計畫某些工廠唯一考量及採用的處理技術，因其對丙烯、丁二烯及 VOCs 皆可達 95%以上的去除效率，分別適用於不同排氣流量和濃度，且經濟可行是本計畫相關工廠之最佳可行毒化物排放控制技術。
表14 VOCs處理技術及本計畫參與工廠使用情形彙整表

<table>
<thead>
<tr>
<th>控制技術</th>
<th>工廠名稱</th>
<th>使用目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>直燃焚化</td>
<td>奇美仁德廠、台化新港 台塑林園廠</td>
<td>1. 聚合反應中未反應單體脫除排氣、單體回收尾氣、ABS 乳化反應凝聚槽 陳置槽等高濃度廢氣處理。</td>
</tr>
</tbody>
</table>
| RTO 焚化 | 台化新港廠、申豐鳳山廠 | 1. 低濃度高流量之廢氣，如 SAN、ABS 樹脂押出機排氣、ABS 乳膠乾燥機排氣等廢氣處理。
 | | 2. 廢水處理場加蓋抽引之廢氣處理。 | |
| 觸媒焚化 | 台橡高雄廠、李長榮小港廠 | 1. TPE 製程乾燥機排氣處理。 |
| 活性碳吸附 | 台橡高雄廠 | 1. BR 製程產生之廢氣及單體回收冷凝尾氣處理。 |
| 湿式洗滌吸收 | 台塑仁武廠、東華合纖廠 | 1. 聚丙烯纖維紡絲機及預延伸新竹廠、奇美仁德廠、ABS 乳膠製程聚合槽、凝集槽陳置槽、乾燥機等未反應單體汽提排氣處理。
 | | 2. SAN 及 ABS 樹脂製粒押出機排氣處理。
 | | 3. 低濃度、高流量之廢氣處理 |
| 冷凝 | 台塑仁武廠、東華合纖廠 | 1. 未反應單體或溶劑冷凝回收再利用。
 | 台化新港廠、台達化林園廠、國喬高雄廠、台橡高雄廠 | 2. 乳膠製程及橡膠製程廢氣 原料桶槽及廢水池加蓋抽引氣體等排氣處理。
 | 国喬高雄廠、南帝林園廠 | 1. ABS 乳膠製程聚合槽、凝集槽陳置槽乾燥機等未反應單體汽提排氣處理。
 | | 2. 乳膠製程及橡膠製程廢氣 原料桶槽及廢水池加蓋抽引氣體等排氣處理。 |
5.3 逸散減量及運作管理規劃

多數製程 VOCs 逸散源均是由於不當操作及設備老舊疏於維護管理所引起的，因此在可行的逸散防制措施上就可分為軟體及硬體兩方面，所謂軟體係指加強操作維護，而硬體則指設備更換或增設收集處理系統，茲分述如下：

5.3.1 加強操作維護

有些逸散源的改善甚為簡單，藉由「定期檢測維修計畫」的擬定及施行，將可降低許多元件的逸散。例如在例行維修時，只要將其中老化或鬆動的填迫物加以換除或重新壓緊，就可使逸散量大為減少，同時利用可攜式碳氫化合物偵測儀實地檢測，將有助於判斷該維修工作是否正確有效。

至於如 VOCs 裝載或卸載的逸散或重合槽開啟時之逸散等，則可藉由操作程序的改善來達到降低逸散之目的。例如在卸料臂脫離或聚合槽開啟前，均應進行回收程序（如自然回收或強制回收），如此即可減少逸散。

5.3.2 硬體改善

並非所有逸散源皆可透過定期維修工作或改善操作程序而達到所需的降低逸散之要求，這時就必需經由設備進行根本的改善。例如為控制 VOCs 自逸散源擴散最好的方法，就是在逸散源裝設密閉排氣系統或局部排氣系統，將收集的 VOCs 導入污染防制設備，如鍋爐或焚化爐加以焚化處理之。而在一般設備元件方面，則可選用現行商業化之低洩漏型元件，如雙軸封式或機械封式泵浦，隔膜式閥等等。

在總體經濟的考量下，逸散減量應是分階段進行，而依目前各廠現況，研擬「三階段逸散減量計畫」是較符合需求的。減量的三個階段分別為：

第一階段：研定及執行「定期檢測維修計畫」

第二階段：改善操作程序及運作管理規劃
第三階段：設備汰換或裝設密閉排氣系統

5.3.3 設備定期檢測維修計畫

研定及執行「設備定期檢測維修計畫」是逸散防制首要工作，依據美國環保署一份技術文件(EPA/625/R-93/005，p1~p4)中指出，只要確實執行所有設備元件的定期檢測及維修，就約可將逸散量減低33%~73%，如表15所示。因此如何規劃擬定「設備定期檢測維修計畫」就成為各廠在進行逸散減量的第一步工作。

表15 施行設備元件定期檢測維修對逸散減量的助益

<table>
<thead>
<tr>
<th>定期檢測維修頻率</th>
<th>逸散量減低比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>泵浦(輕質液)</td>
<td></td>
</tr>
<tr>
<td>1.每月乙次</td>
<td>61%</td>
</tr>
<tr>
<td>2.每季乙次</td>
<td>33%</td>
</tr>
<tr>
<td>氣體閥</td>
<td></td>
</tr>
<tr>
<td>1.每月乙次</td>
<td>73%</td>
</tr>
<tr>
<td>2.每季乙次</td>
<td>64%</td>
</tr>
<tr>
<td>氣體釋壓閥</td>
<td></td>
</tr>
<tr>
<td>1.每季乙次</td>
<td>44%</td>
</tr>
<tr>
<td>壓縮機</td>
<td></td>
</tr>
<tr>
<td>1.每季乙次</td>
<td>33%</td>
</tr>
</tbody>
</table>

1. 設備元件

(1) 定期檢測頻率

泵 浦：每季檢測乙次
壓 縮 機：每季檢測乙次
氣體釋壓閥、安全閥：每季檢測乙次
取 樣 連 接 系 統：每季檢測乙次
閥 、 開 口 閥：每季檢測乙次
法 蘭：每季檢測乙次
卸 料 站：每季檢測乙次

註：檢測係指使用可攜式總有機碳分析儀（如 Foxboro OVA-108）依美國環保署 method 21 進行測定，並記錄結果。

(2) 修護規定

設備元件經發現為洩漏者，除有特殊情況必需延長其修護期限外，一般應依下列期限完成修護：

自發現日起 48 小時內完成修護者：
A. 設備軸封處有製程流體之滴漏
B. 任何設備元件之淨檢測值超過 50,000 ppm 者

自發現日起 7 日內完成修護者：
A. 氣體釋壓裝置之淨檢測值超過 500ppm 者
B. 任何設備元件之淨檢測值超過 10,000ppm 者

上述所謂特殊情況係指有下列情形之一者：
a. 除該製程單元停車外，否則無法修復者
b. 若因立即修護而導致 VOC 之排放遠大於該洩漏源之洩漏者
c. 該洩漏源需以汰換或設備改良方式進行改善，而無法僅靠維修達到禁止洩漏者
d. 其他可資證明其延長修復確因技術上之困難理由者
而有上述情形導致需延長修護期限之洩漏源，最遲應於下次停車期間內完成修護。在未完成修護期間，應以易識別之標籤註明其元件編號、洩漏發現日期及預定修護日期，標示在洩漏源上，當修護完成後始可除下。

5.3.4 改善操作程序及運作管理規劃

在此一階段的逸散減量工作上，將可分兩方面進行，首先建議在製程區裝設 VOCs 偵測系統，如此將可防患於未然，只要設備元件一有洩漏，馬上就可由偵測系統得知製程場所 VOCs 濃度不正常，進而發現問題所在，迅速解決。

而在操作程序的改善上則有下列幾點建議，各廠可視實際狀況參考採用：
1. VOCs 灌裝時，在卸料臂脫離前應採行回收程序。
2. 聚合反應器開蓋前應進行自然回收或強制回收。
3. 經由取樣連接系統取樣之定期品管檢測樣品在完成分析檢測後，應將剩餘樣品至抽氣櫃中吹除。
4. 含 VOCs 之製程廢水若有 VOCs 逸散之虞時，應採取防範措施，如以管路輸送至廢水處理場，而非以開放渠道輸送。
5. 廢水處理池加蓋防止逸散，甚至抽引逸散氣體進行焚化或生物處理。

5.3.5 低洩漏型設備元件

逸散防制最後一個階段就是針對易產生洩漏的設備元件予以汰換，例如將一般泵浦更換為雙軸封式泵浦，在釋壓閥處裝置破裂盤、O-ring、連接至密閉排氣系統等等，而在開口端線處則可加裝盲板等。以下則列出目前已商業化的低洩漏型元件，基本上只要選用這些低洩漏型元件，將可保證逸散洩漏情況不會大量發生。
1. 泵浦軸封
一般在化學工業最常使用的泵浦為離心式(centrifugal type)，其次為正位移式(positive displacement type)，而後者大部分為迥轉式(rotary)。泵浦之轉軸(shaft)軸封若以填迫式軸封(packed seal)或單機械式軸封(single-mechanical seal)，皆易發生洩漏現象(尤其是前者)，可採下列兩種設備型式改善之：

(1) 雙機械式軸封(double or dual mechanical seal)

兩個單機械式軸封以背對背方式組合，因而在它們之間提供一個讓軸封液(seal fluid)獨立循環之空間。軸封液必須不為輸送流體之污染物(contaminant)；其次軸封油槽應連接到一個除氣(degassing)控制設備，以消除可能之排放，而軸封液壓力指示系統也可警示可能之軸封失誤發生。

由於雙機械式軸封防漏效果甚佳，尤其在高壓時(大於150 psi)，因此有些專家極力推薦使用於攪拌器(agitator)上。雖然初期投資成本比其它軸封方式來得大，但維修頻率僅為填迫式的1/2～1/4。

由上所述，機械式軸封雖有許多優點，但仍有一些應用的限制，包括僅能安裝於旋轉軸(rotating shafts)、最高正常使用溫度約400℃，須有過濾軸封液之裝置及建造材質須慎選，以符合操作狀況。經由適當選材、安裝及操作，機械式軸封之操作壽命可至2年；對於輸送有毒或有致癌性VOCs時，例如VCM，最好選用雙機械式軸封或無軸封式泵浦。

(2) 無軸封式泵浦(sealless pumps)

主要有罐型馬達式泵浦(canned-motor pump)及隔膜式泵浦(diaphram pump)，但其尚未被廣泛地採用，主要是因有較高之初期投資成本及缺乏長期運作資料；前者為離心式，而後者為活塞式(piston)。
2. 閥(Valves)

閥為化工廠中最常見逸散源。它們可分類為:
(1) 位置 — 管線 (in-line) 或 開口端 (open-ended)
(2) 操作方式 — 手動式或搖控式
(3) 型式 — 套閥 (globe)、閘閥 (gate)、塞閥 (plug)、球閥 (ball)

根據統計所有化工業上使用閥約有 50% 為 on/off 型、40% 為 節流型 (flow throttling) 及 10% 止逆流型 (back flow preventing)。從閥之逸散性洩漏源主要有二種型式：

開口閥: 大部份被使用於採樣 (sampling)、出口 (venting) 及排液 (draining)。普通可以加裝盲板 (blind flange)、蓋子 (cap) 或塞子 (plug) 即可有效控制。

閥桿 (stem) 及 閥體連合環 (joining ring to the valve body): 為閥的二個主要洩漏源，日常之定期維修，如重新壓緊或汰換填迫物，或加注潤滑油脂等，即可使洩漏現象大為改善；其它使用無填迫式 (packless type) 閥，如隔膜式 (diaphragm type) 閥及軸封金屬腹式 (sealed metal bellows type) 閥，即可有效減少洩漏。

3. 安全/釋壓閥 (safety/relief valves)

安全/釋壓閥的設置，在於異常高壓時，能將程序流體釋出，以保護設備或管線本身之安全，主要靠一彈簧裝置，正常狀態可予密閉，然彈簧之靈敏度較低，在正常壓力的擾動狀態中，常常會有間歇性逸散的現象，且洩壓後，往往不能回復至原先良好的密封狀態。一般改進方式，可於安全/釋壓閥之上游處加裝一較精密之破裂片 (rupture disk) 及壓力計，能使不正常的洩漏減至最少，而正常洩漏所排出之 VOCs 則可導入燃燒器或其它防制系統中處理之。

4. 壓縮機 (compressors)
如同泵浦，離心式及正位移式壓縮機需於轉軸(shaft)附近施予軸封，以防止其內部高壓壓縮狀氣體之逸散，但此軸封比泵浦軸封來得困難及複雜。其逸散改善方式，可以阻隔流體密閉之，或將壓縮機密閉抽氣至燃燒器或其它防制系統中處理。

5. 採樣裝置(process sampling assemblies)

製程採樣為生產過程中，定期驗證原料或中間產物及最終產品之品質，並評估製程操作及建立質量平衡是否合乎所求之用。一般採樣時常需先將程序流體流出一部份，待穩定後再採集代表性樣品，此流體則直接排入溝渠中或大氣中，即造成逸散。理想上，採樣裝置應於程序設計階段時，即應規劃防止此問題；改善方式可採密閉循環式採樣系統(closed-loop sampling systems)。另一根本解決方式，為改成線上(on-line)之樣品分析，即可杜絕逸散。

6. 冷卻水塔及溝渠(cooling water towers and drains)

一般將冷卻水塔及溝渠(含廢水處理場)視為二次(secondary)逸散性源；從勞工曝露的觀點而言，它們顯得格外重要，其再循環冷卻水逸散主要來自製程中熱交換設備。安裝分析儀器偵測再循環冷卻水，當有異常高濃度時，即表示製程中某些設備有洩漏，而需循線追縱之。至於溝渠，主要乃靠可攜式總碳氫化合物偵測儀定期偵測預防及追縱；但其根本解決之道則是摒棄任何開放式溝渠，甚至安裝回收系統。

7. 法蘭(flanges)

法蘭為一於兩個緊鄰管線面間插入一適當的墊圈(gasket)，以連接結合兩件管線或設備之元件；一般而言，法蘭之墊圈及密合乃藉螺釘(bolt)，定期維修時，如重新壓緊或汰換墊圈，即可使洩漏現象大為改善；但其根本控制之道，最好採管線或焊接(welding)方式。
第六章 國外丙烯及1,3-丁二烯相關法規

本計畫經由多方面蒐集美國、日本、歐洲（英國）有關丙烯、1,3-丁二烯之相關法規，並希望能有聚丙烯纖維、ABS樹脂及橡膠製程等毒化物或VOCs排放及逸散之管制標準，但僅能蒐集到此三個國家有關毒化物之管制法規，並未發現有關於製程的管制標準。

1. 美國管制法規

美國在 Federal Register 40CFR“Toxic Pollutant Effluent Standards”中明列65種毒性污染物（Toxic Pollutants）丙烯為其中之一，但1,3-丁二烯並未列入。而其中部份毒性污染物在“National Emission Standard for Hazardous Air Pollutants”中有針對特定毒化物在不同製程中的大氣排放標準，如Subpart F中明列1,2-二氯乙烯（EDC）、氯乙烯（VCM）及聚氯乙烯（PVC）製造工廠之VCM大氣排放標準，但無丙烯或1,3-丁二烯相關製程的排放標準。

茲與美國環保署Manager Dennis Beauregard連繫，向其請教丙烯及1,3-丁二烯在美國之管制情形，根據Manager Beauregard之e-mail顯示，美國對於此二個化合物之管制是根據MACT的精神，同時此二個化合物在州政府或地方政府管制的可能性極小，原文資料請參見附錄三。

2. 日本管制法規

日本於平成元年發行之環境六法“毒物及劇物取締法”明列27種“毒性”，93種“劇物”及9種“特定毒物”，其中丙烯為93種“劇物”之一，而1,3-丁二烯未出現在其中，法規原文詳見附錄三。

經與日本氯乙烯環境協會(Vinyl Environment Council)之Mr. T. Sakuma聯繫，同時透過Mr. T. Sakuma之協助，得到日本環境廳(Environment Agency of Japan)官員Mr. Masao Takatsu提供有關丙烯及1,3-丁二烯之資料，茲將Mr. T. Sakumua及Mr. Masao Takatsu二人所提供之資料加以整理，將日本在有害空氣污染物質之管制情形整理如下：
1. 日本目前只有苯(benzene)、三氯乙烯(trichloroethylene)、四氯乙烯(tetrachloroethylene)、及戴奧辛(dioxins)等四个物质其排放到大气中是被管制的。
2. 日本環境廳從許多可能的有害空氣污染物中選取了22個優先物質對其進行立即的測量以便控制其排放至大氣中，並且鼓勵工業界能自動提昇監測活動以降低有害空氣污染物之排放至大氣中。丙烯和1,3-丁二烯皆是此22個優先物質中的成員，但是對其管制標準，迄今日本政府則尚未訂定。茲將於Mr. T. Sakuma及Mr. Masao Takatsu連繫之e-mail資料置於附錄三，將日本環境廳所列的22個優先物質清單詳列於表16。
表16 日本環境廳所列的22個優先物質清單

<table>
<thead>
<tr>
<th>中文名稱</th>
<th>英文名稱</th>
<th>化學文摘社登記號碼 (CAS Number)</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2,3,7,8-四氯戴奧辛</td>
<td>2,3,7,8-tetrachlorodibenzo-p-dioxin</td>
<td>1748-01-6</td>
<td></td>
</tr>
<tr>
<td>2 三氯乙烯</td>
<td>Trichloroethylene</td>
<td>79-01-6</td>
<td></td>
</tr>
<tr>
<td>3 鎳及鎳化合物</td>
<td>Nickel and Ni compounds</td>
<td>7440-02-0%</td>
<td></td>
</tr>
<tr>
<td>4 砷及砷化合物</td>
<td>Arsenic and As compounds</td>
<td>7440-38-2%</td>
<td></td>
</tr>
<tr>
<td>5 錳及錳化合物</td>
<td>Manganese and Mn Compounds</td>
<td>7439-96-5%</td>
<td></td>
</tr>
<tr>
<td>6 氯乙烯</td>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td></td>
</tr>
<tr>
<td>7 甲醛</td>
<td>Formaldehyde</td>
<td>50-00-0</td>
<td></td>
</tr>
<tr>
<td>8 二氯甲烷</td>
<td>Dichloromethane</td>
<td>75-09-2</td>
<td></td>
</tr>
<tr>
<td>9 鈦及鈦化合物(含10及11)</td>
<td>Beryllium and Be compounds (include 10&11)</td>
<td>744-41-7%</td>
<td></td>
</tr>
</tbody>
</table>

EPA-88-U1J1-03-006114 114
<table>
<thead>
<tr>
<th>中文名稱</th>
<th>英文名稱</th>
<th>化學文摘社登記號碼（CAS Number）</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 氟氧化鈷</td>
<td>Berylliumoxyfluoride</td>
<td>63990-88-5</td>
<td></td>
</tr>
<tr>
<td>11 碳酸鈷(1：1)</td>
<td>Berylliumcarbonate(1：1)</td>
<td>13106-47-3</td>
<td></td>
</tr>
<tr>
<td>12 1,2-二氯乙烷</td>
<td>1,2-dichloroethane</td>
<td>107-06-2</td>
<td></td>
</tr>
<tr>
<td>13 丁二烯</td>
<td>Butadiene</td>
<td>106-99-0</td>
<td></td>
</tr>
<tr>
<td>14 鉻及鈷化合物</td>
<td>Chromium and Cr compounds</td>
<td>7440-47-3</td>
<td></td>
</tr>
<tr>
<td>15 汞及汞化合物</td>
<td>Mercury and Hg Compounds</td>
<td>7439-97-6</td>
<td></td>
</tr>
<tr>
<td>16 滑石(不含石綿形纖維)</td>
<td>TALC(Not containing Asbestiformfibres)</td>
<td>14807-96-6</td>
<td></td>
</tr>
<tr>
<td>17 乙醛</td>
<td>Acetaldehyde</td>
<td>75-07-0</td>
<td></td>
</tr>
<tr>
<td>18 氯仿</td>
<td>Chloroform</td>
<td>67-66-3</td>
<td></td>
</tr>
<tr>
<td>19 苯</td>
<td>Benzene</td>
<td>71-43-2</td>
<td></td>
</tr>
</tbody>
</table>
表16 日本環境廳所列的22個優先物質清單(續)

<table>
<thead>
<tr>
<th>中文名稱</th>
<th>英文名稱</th>
<th>化學文摘社登記號碼 (CAS Number)</th>
<th>備註</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 氯甲甲醚</td>
<td>Chloromethyl methyl ether</td>
<td>107-30-2</td>
<td></td>
</tr>
<tr>
<td>21 丙烯</td>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td></td>
</tr>
<tr>
<td>22 四氯乙烯</td>
<td>Tetrachloroethylene</td>
<td>127-18-4</td>
<td></td>
</tr>
<tr>
<td>23 苯(a)芘</td>
<td>Benzo(a) Pyrene</td>
<td>50-32-8</td>
<td></td>
</tr>
<tr>
<td>24 四氯戴奧辛族(含 喃) TCDD Homologues (含 1)</td>
<td>(include Furan) (include 1)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25 環氧乙烷</td>
<td>ethylene oxide</td>
<td>75-21-8</td>
<td></td>
</tr>
</tbody>
</table>

註：表16之優先物質清單中雖然列有25個物質，但是物質p是包括有物質10及11；而物質24是包含有物質1，因此實際共有22個優先物質。
3. 英國管制法規

第七章 毒化物製程改善及排放減量建議

根據環保署八十七年度委託計畫：毒性化學物質環境流布調查
與資料庫之建立(高雄仁武、大社、林園工業區)[1],研究結果摘要部份如下：

1. 經調查，林園工業區毒化物之運作量最高，為 49,371,070 公噸/年。
 其次為大社工業區，總運作量為 1,397,613 公噸/年，仁武工業區
 最少，為 32,153 公噸/年。

2. 釋放量方面
 (1) 以林園工業區為最高，總共釋放 2,122 公噸/年之毒化物。其中
 約 2,112 公噸/年釋放至大氣(佔 99.5%)，約 7 公噸/年釋放至水
 體(佔 0.3%)，約 3 公噸/年釋放至土壤(佔 0.2%)。
 (2) 大社工業區之總釋放量次高，總共約 464 公噸/年。其中釋放
 至大氣約為 459 公噸/年(佔 98.8%)，釋放至水體約為 3 公噸/
 年(佔 0.6%)，釋放至土壤約為 2 公噸/年(佔 0.4%)。
 (3) 仁武工業區之總釋放量最少，總共約 271 公噸/年。其中約 259
 公噸/年釋放至大氣(佔 95.6%)，約 7 公噸/年釋放至水體(佔
 2.6%)，約 5 公噸/年釋放至土壤(約 1.8%)。
 (4) 三工業區之釋放總為 2,857 公噸/年，以釋放至空氣為最多
 (2,830 公噸/年，佔 99.1%)，釋放至水體次之(17 公噸/年，佔
 0.6%)，釋放至土壤最少(10 公噸/年，佔 0.3%)。

有鑑於此，環保署已公告毒化物中 7 種列管毒化物(包含丙烯、1,3-丁二烯)進行運作廠商自提逸散減量計畫，但根據
經濟部工業局「台灣地區石化工業 VOCs 空氣污染物問題特徵
與防制 - 工業污染防治，65 期」之研究結果，提及台灣目前
石化工業 VOCs 空氣污染防治現況，工廠普遍存有設備效率及
操作問題，其中包括排放源太多；改善工程龐雜；人力、技術
限制；生產管理及資金運用皆面臨困擾。因此，若僅由廠商自
提製程改善，逸散減量及運作管理計畫，恐有避重就輕，曠日
費時之虞，而減少丙烯及丁二烯在林園、大社及仁武地區的釋放量已是刻不容緩之事。

本計畫已確切掌握丙烯及1,3-丁二烯運作量最大的三種製程聚丙烯纖維、ABS樹脂及橡膠製程之完整詳細的製造程序及毒化物運作流程，並掌握國內各製造工廠的毒化物貯存方式，製程技術及設施、操作方式及流程、主要污染源及控制技術、逸散發生源及防制策略、毒化物排放濃度及處理效率等等。本計畫以最短的時間減少最多的毒化物釋放量為目標，與林園、大社及仁武地區的製造廠商研擬具體可行的毒化物減量技術及方案，作為環保單位要求業者進行釋放量削減的依據，如此，必能收立竿見影之效，降低林園、大社、仁武等地區居民所可能遭受的危害，此項工作將分兩部份來進行(1)製程改善(2)毒化物排放及逸散減量。

7.1 製程改善建議

源頭減量或製程改變(含替代品的採行)較管末處理為優，污染防制工作的執行準則。在目前並無替代品可以取代丙烯及1,3-丁二烯的情況下，源頭減量或製程改變對國內廠商而言，仍有許多空間可以努力及改善之處，例如：

1. 聚合反應器開啟清洗附於槽壁之殘餘聚合物時，易造成反應器中殘存未反應單體的逸散。在聚合反應技術作改進或採用免垢技術減少開啟頻率，或在開啟前重覆真空脫除反應器中殘除的單體。

2. 聚合反應後產生之乳狀聚合物，其殘餘單體含量從數百萬至數萬 ppm，在乳狀聚合物經良好的脫除單體後，單體的殘存量可降至數十 ppm 以下，再進行過濾、押出抽絲、造粒或乾燥等製程，其排氣中所含毒化物的濃度將大量減少。

3. 聚丁二烯乳膠(PBL)內含有少量凝結物，再輸送管設置有濾
網以過濾這些凝結物，幾乎每天即須清理一次，打開過濾器易造成丁二烯逸散，目前最近發展 Latex Pump 可完全密封不須拆清，可取代濾網的使用，不僅避免大量丁二烯逸散，並可降低維修成本。

4. 在國外許多 ABS 樹脂製造廠，本身已不生產聚丁二烯乳膠 (PBL) 此項中間原料，直接購買 PBL 作為原料進行聚合 ABS 乳膠及 ABS 樹脂，如此，工廠即可免除 1,3-丁二烯的使用。未來國內若有新設 ABS 製造廠或擴增生產線，可考慮採用此一運作方式。

7.2 毒化物排放及逸散減量措施

從參考資料中調查結論之釋放量的計算結果，顯示排放與逸散源之減量為管制石化業毒化物污染危害非常重要的部份，且在管制措施上應該比一般空氣、廢水或廢棄物的法規標準來的嚴格，例如：

1. 揮發性有機物空氣污染管制及排放標準中石化製程之排放管道對排放濃度的規範，其排氣量小於 60Nm³/hr 之連續操作製程是豁免的，造成部份石化工廠單體壓縮冷凝回收單元不凝結尾氣並未適當處理，其中非甲烷總碳氫化合物每年排放可達 4.6~72.4 公噸，丙烯 3.4~9.0 公噸，丁二烯 6.7 公噸，甚至於更高，本計畫建議此類製程尾氣應引至燃燒塔、鍋爐或焚化爐焚化處理。

2. 部份排放源未採用適當之處理技術及設施，造成毒化物排放濃度及排放量偏高，本計畫整理國內業者現行採用之控制技術，並參照 BACT/MACT 之精神研擬丙烯 、丁二烯及 VOCs 最佳可行控制技術是直燃焚化、蓄熱式焚化及觸媒焚化等三種技術，建議工廠未來在增設或改善排放源處理設備時應採用此三種技術其中之一。
3. 液體儲槽的逸散控制，經常僅考慮到原料儲槽，忽略了逸散量更大的製程運作中儲槽，如中間槽、單體混合貯槽、緩衝槽等，其呼吸閥或緊急洩壓閥應同原料儲槽連接至廢氣燃燒塔處理排放之廢氣。

4. 裝載、卸料作業應採密閉式作業系統，卸料臂脫離前需有單體回收系統。

5. 設備元件逸散防制方面，確切實施設備定期檢測維修計畫，可將逸散量減低33%~73%，各石化廠皆已研擬一套設備檢測維修計畫，本計畫研究人員與工廠負責人檢討其完整性與可行性，建議其確切落實此一工作。硬體應用低洩漏型設備元件，尤其是泵浦軸封、單機械軸封泵浦其洩漏濃度極易超過10,000ppm，應將單體原料泵浦皆改採雙機械軸封或無軸封式，而採樣裝置也應改善為密閉循環式採樣系統。

6. 廢水逸散：製程廢水皆應以密閉管線送至廢水池，嚴禁以開放溝渠輸送，廢水處理場中，毒化物逸散量大之廢水池如調勻池、中和池、緩衝池等，建議應加蓋密封，並裝設抽氣設備，將廢氣抽引至處理設施，經適當處理後排放。

7. 廢棄物亦可能造成毒化物的排放污染，工廠內單體純化回收單元會產生含高比例毒化物之重沸物(廢渣)及輕沸物(廢液)，應儘量於廠內廢棄物焚化爐或鍋爐焚化處理。若委託代清除業處理，也應負起督導之責，確認代清除業是以焚化來處理，而非貯存或掩理，因掩埋可能造成嚴重之土壤及地下水污染。

7.3 各廠製程改善及污染防治建議

本計畫研究人員於期初赴各廠現勘與訪談及資料蒐集整理，並進行主要污染源採樣檢測工作，確切掌握本計畫研究之三種製程工廠的毒化貯存式、製程技術及設備、操作方式及流程、主要污染源及控制技術、逸散發生源及防制策略、毒化物排放濃
度及處理效率等等。並於期中過後，再次至各廠與環保及製程相關人員進行討論，就工廠之製程方式及流程可改善和加強之處加以檢討，並建議排放及逸散防制措施，提供作為各廠毒化物減量及減少排放之參考。各廠毒性化學物質製程改善及污染防制建議書參見附錄四，此份建議書雖無強制性，但可揭露及提醒各廠主要缺失，已對工廠造成改善的壓力。另環保署毒管處定期要求各廠提報“毒化物製程改善、逸散減量及運作管理計畫”，建議書提及之改善事項可作為下次提報改善之重點事項，同時，環保署空保處每年皆會對工廠之主要排放源委託採樣檢測稽核，本計畫研究發現部份工廠之 VOCs 及毒化物排放源排氣未適當處理，造成大量 VOCs 及毒化物排放，此份研究報告可提供環保署空保處作為稽核時之參考，最後，藉重地方環保單位之稽查體系，從本研究報告中了解聚丙烯 纖維、ABS 樹脂及橡膠製程之生產過程、造成毒化物及 VOC 之主要排放和逸散源，在對此類工廠稽查時，能確切掌握重點，督促工廠執行毒化物排放及逸散減量工作，並持續進行改善。如此，多管齊下，相信本計畫對毒化物減量之工作可盡棉薄之力。

7.4 毒化物減量技術說明會

為推廣本計畫研究之成果，並將建立之毒化物減量技術落實至相關工廠，特舉辦乙場毒性化學物質減量技術說明會，課程內容包括 1. 毒性化學物質減量技術說明，2. 毒性化學物質釋放量盤查，3. 化學物質失控之災例調查、分析與檢討。說明會期程如表 17 所示，講義內容詳見附錄五，與會人員計有環保單位人員 10 名，工廠代表人員 26 名。多位與會人員建議本計畫之研究報告應分發給每家工廠之環保負責人員，提供本計畫之研究成果作為工廠改善之參考及資訊來源，如此，環保署、本計畫研究人員及工廠環保人員可藉由研究報告及成果進一步和持續性的交流和討論。
表17 毒性化學物質減量技術說明會期程

時間：88 年 5 月 14 日（五）

地點：工業技術研究院高雄工服部

（高雄市一心一路 243 號 4 樓之 1）

議程：

<table>
<thead>
<tr>
<th>時 間</th>
<th>題 目</th>
<th>主 講 人</th>
</tr>
</thead>
<tbody>
<tr>
<td>08：20~08：40</td>
<td>報到</td>
<td>工研院化工所</td>
</tr>
<tr>
<td>08：40~08：50</td>
<td>致詞</td>
<td>陳文德科長</td>
</tr>
<tr>
<td>08：50~09：30</td>
<td>毒性化學物質減量技術說明</td>
<td>工研院化工所</td>
</tr>
<tr>
<td></td>
<td></td>
<td>杜敬民研究員</td>
</tr>
<tr>
<td>09：20~30：30</td>
<td>化學物質失控之災例調查，分析及檢討</td>
<td>中央警察大學</td>
</tr>
<tr>
<td></td>
<td></td>
<td>陳金蓮教授</td>
</tr>
<tr>
<td>10：30~10：50</td>
<td>休息</td>
<td></td>
</tr>
<tr>
<td>10：50~11：50</td>
<td>毒性化學物質釋放量盤查</td>
<td>工研院化工所</td>
</tr>
<tr>
<td></td>
<td></td>
<td>黃英傑經理</td>
</tr>
<tr>
<td>11：50~12：00</td>
<td>綜合討論</td>
<td>各位主講人</td>
</tr>
</tbody>
</table>
第八章 結 論

1. 蒐集整理聚丙烯 纖維、ABS 樹脂及橡膠製造廠之詳細製造流程，深入了解每一製程單元，並參考美國工廠之製程步驟、污染排放等資料，對丙烯及 1,3-丁二烯的使用程序、產品製造步驟、產品特性及污染排放、逸散源皆已確實掌握，對協助國內各廠進行製程改善，污染排放及逸散防制等毒化物減量技術之建立，極具參考價值。

2. 本計畫調查之聚丙烯纖維製造廠有 2 家，ABS 樹脂製造廠 4 家、橡膠製造廠 5 家，合計丙烯年使用量約 40 萬公噸，1,3-丁二烯約 33 萬公噸，兩者皆幾乎等於國內生產量加進口量的總和，顯見此 11 家製造廠對丙烯和丁二烯進行釋放量的減量工作，是國內毒化物減量工作重要的一環。

3. 針對各廠主要污染源進行採樣檢測工作，檢測項目有非甲烷總碳氫化合物、丙烯及 1,3-丁二烯，檢測結果發現單體回收不凝結之高濃度低流量廢氣中含高濃度毒化物，每年 VOCs 的排放量可達 4.6~72.4 公噸，丙烯 3.4~9.0 公噸，丁二烯 6.8 公噸，甚至更高的排放量，而部份廢氣處理設施效率不彰，每年 VOCs 的排放量可達 259.3 公噸，丙烯 229.5 公噸，造成明顯污染，急待進行改善。

4. 有鑑於部份工廠未採用適當之處理技術及設備控制毒化物之釋放，本計畫參考美國環保署對 BACT/MACT 定義之精神及國內各廠現行使用之防制技術，研擬最佳可行之控制技術，其中直燃焚化、RTO 焚化及觸媒焚化。是本計畫某些工廠唯一考量及採用處理技術，因其對丙烯、丁二烯及 VOCs 皆可達 95%以上的去除效率，分別適用於不同排氣流量和濃度，且經濟可行是本計畫相關工廠之最佳可行毒化物排放控制技術。

5. 已確切掌握國內各製造工廠的毒化物貯存方式，製程技術及設施、操作方式及流程、主要污染源及控制技術、逸散發生源及防制策略、毒化物排放濃度及處理效率等等。並與各廠環保及製程相關人
員行討論，就工廠之製程方式及流程可改善和加強之處加以檢討，並建議排放及逸散防制措施，提供作為各廠毒化物減量及減少排放之參考。

6. 撰寫各廠毒性化學物質製程改善及污染防制建議書，若各廠確實參照建議書進行毒化物減量工作，主要排放源每年將可減少 VOCs 460公噸、毒化物 330 公噸的排放；甚至於更多，另在逸散污染方面，加強定期檢測維修計畫，改善操作程序及運作管理規劃，設備元件更新，裝設密閉排氣系統等，將使毒化物減少的排放量更為可觀。

7. 各廠毒性化學物質製程改善及污染防制建議書，雖無強制性，但可揭露及提醒各廠主要缺失，已對工廠造成改善的壓力。另環保署毒管處定期要求各廠提報“毒化物製程改善、逸散減量及運作管理計畫”，建議書提及之改善事項可作為下次提報改善之重點事項，同時，環保署空保處每年皆會對工廠之主要排放源自行採樣檢測稽核，此份研究報告可提供環保署空保處作為稽核時之參考，最後，藉重地方環保單位之稽查體系，從本研究報告中了解聚丙烯、ABS 樹脂及橡膠製製之生產過程、造成毒化物及 VOC 之主要排放和逸散源，在對此類工廠稽查時，能確切掌握重點，督促工廠執行毒化物製程改善、污染排放及逸散防制工作，並持續進行改善。
第九章 參考文獻

1. 行政院環境保護署: "毒性化學物質環境流布調查與資料庫之建立 (高雄仁武、大社、林園工業區)" 計畫期末報告 (EPA-87-J203-03-20)，中華民國八十七年六月三十日。
2. 謝俊雄。 (民國 77 年)。石油化學工業，文京圖書有限公司，台北。
3. 徐武軍、陳陵援、郭東瀛、邱作基。 (民國 87 年 8 月初版)。化學工業導論 — 石油化學化工業 — 能源、環保與工安篇，滄海書局，台中。
4. USEPA, “Locating And Estimating Air Emissions Form Sources of Acrylonitrile”, EPA-450/4-84-007a，March 1984。
5. 行政院環境保護署: "毒性化學物質釋放量技術手冊(丙烯醯胺、丙烯)"，中華民國八十六年五月三十一日。
9. 行政院環境保護署: "毒性化學物質在環境中流布調查先期規劃—毒性化學物質目的用途調查與危害評估" 計畫期末報告 (EPA-86-J203-03-20)，中華民國八十六年六月三十日。
10. USEPA, "Locating And Estimating Air Emissions From Sources of 1,3-Butadiene"，EPA-454/R-96-008，November 1996。
11. 「1997 中華民國的石油化學工業」，年報(民國八十六年五月)，台灣區石油化學工業同業公會編印。
12. 行政院環境保護署: "污染防治技術開發與推廣專案研究揮發性有機空氣污染物處理效果暨成本研究" 計畫期末報告。
(EPA-86-FA11-09-94)。中華民國八十六年六月。
13. 周明顯, ”含低濃度 VOC 廢氣處理實例介紹-以生物滴濾塔處理合成橡膠廠排氣”, 工業污染防治報導, 中華民國八十六年四月五日, 第 109 期, pp.010-012。
14. 行政院環境保護署”毒性化學物質釋放量申報指引”中華民國八十七年四月。